cbus Documentation
Release 0.2-dev

Michael Farrell

Oct 24, 2021

Contents

Introduction

1.1 WhatisC-Bus?
1.2 Clipsal’'sotherinterfaces e
Installing libcbus

2.1 All components (systeminstall) e
2.2 C-Bus MQTT bridge only (Dockerimage)
cmgqttd

3.1 RUNNINg . . . e e e e e e e e e
3.2 Configuration e e e e e e e e e e e e e e e
3.3 Using with Home Assistant o e e
34 RunninginDocker L e
Hacking

4.1 Official documentation oL e e e e e e
42 CNI/network protocol o o e e e e e e e e e e
4.3 Setting up a fake CNI and sniffing the protocol
4.4 USBsupport/5500PCU e e e e e e e
45 UnitTests oo e e e e
CNI Discovery

5.1 Discovery QUETY o o v v i e e e e e e e e e e e e e
5.2 Discovery Reply o . L e e e e
Wiser

6.1 Downloading SWFs
6.2 Protocol. L e e e e
6.3 Gettingashell

64 CFTP
6.5 Firmware image
dump_labels utility

7.1 Invocation . .

libcbus module index

8.1

cbus Package .

19
19
19

21
21
22
23
24
27

29
29

31

9 Indices and tables
Python Module Index

Index

53

55

57

cbus Documentation, Release 0.2-dev

Project Page / Source repository: https://github.com/micolous/cbus
libcbus is a set of Python libraries for interacting with Clipsal C-Bus.

Contents:

Contents 1

https://github.com/micolous/cbus

cbus Documentation, Release 0.2-dev

2 Contents

CHAPTER 1

Introduction

Welcome to 1ibcbus!

This is a Python library for interacting with Clipsal C-Bus networks through a PCI (PC Interface) or CNI (C-Bus
Network Interface).

This consists of:

e A C-Bus MQTT bridge (cmgqttd), which provides a high level API for controlling C-Bus networks with other
systems (such as Home Assistant)

* A low-level interface for parsing and producing C-Bus packets, and using a PCI with asyncio

e A library for parsing information from C-Bus Toolkit project backup files, and visualising networks with
graphviz

* A “fake PCI” test server for parsing data sent by C-Bus applications.

It is a completely open source implementation (LGPLv3) of the C-Bus PCI/CNI protocol in Python, based on Clipsal’s
public documentation of the PCI Serial Interface and some reverse engineering.

Unlike a number of other similar projects, it does not depend on C-Gate or libcbm. This makes the code much more
portable between platforms, as well as avoiding the hazards of closed-source software. :)

Warning: Despite using RJ45 connectors and CAT-5 cabling commonly associated with Ethernet networks,
C-Bus uses totally different signalling (about 10 kbit/s) and has a 36 volt power feed.

You cannot patch an ordinary network card into a C-Bus network.

This project requires a PCI or CNI to communicate with a C-Bus network.

1.1 What is C-Bus?

C-Bus is a home automation and electrical control system made by Clipsal. It’s also known as Square D in the United
States, and sold under other brands worldwide by Schnider Electric.

https://updates.clipsal.com/ClipsalSoftwareDownload/DL/downloads/OpenCBus/OpenCBusProtocolDownloads.html
https://updates.clipsal.com/ClipsalSoftwareDownload/DL/downloads/OpenCBus/OpenCBusProtocolDownloads.html

cbus Documentation, Release 0.2-dev

It uses low voltage (36 volts) wiring for light switches (panels) and other sensors, and centrally-fed dimmer and relay
controls for devices (such as lights).

The C-Bus PCI and CNI can interface with a C-Bus network via Serial' and TCP/IPv4 respectively. These use a
common interface described in the Serial Interface Guide, and other public C-Bus documentation.

1.2 Clipsal’s other interfaces

In addition to protocol documentation, Clipsal also provide two systems for interacting with C-Bus, 1ibcbm and
C-Gate. Clipsal’s own software (like Toolkit) and hardware (like Wiser) use this to interact with C-Bus networks over
serial and IPv4.

1.2.1 libcbm

libcbm supports to C-Bus protocol completely, including conforming to the various “protocol certification levels”.

It is written in C, and distributed as a static library for x86_32 Linux and Windows systems. Clipsal has re-
leased its source code under the Boost license, which also includes Delphi bindings and support for ARMv3/4/4T,
Hitachi/Renesas H8, PowerPC 405 (on Linux) and TI MSP430 processors.

This hasn’t been updated since 2009, and doesn’t support x86_64 or comparatively-modern ARM CPUs (such as
that used in the Raspberry Pi).

1.2.2 C-Gate

C-Gate is a closed source, C-Bus abstraction service written in Java.

It appears to support a subset of the C-Bus protocol, and comparing its interactions with a PCI with the Serial Interface
Guide seems to suggest it is using a bunch of commands that are officially deprecated.

It depends on the (closed source) SeriallO library for serial communication, which requires a JNI (Java Native Inter-
face) library that is only available on x86_32 Windows and old versions of Linux.

I The PCI is also available in a USB variant, which uses an in-built cp210x USB to Serial converter. It is otherwise functionally identical to
the Serial version.

4 Chapter 1. Introduction

https://updates.clipsal.com/ClipsalSoftwareDownload/DL/downloads/OpenCBus/Serial%20Interface%20User%20Guide.pdf
https://updates.clipsal.com/ClipsalSoftwareDownload/DL/downloads/OpenCBus/OpenCBusProtocolDownloads.html
https://sourceforge.net/projects/cbusmodule/files/source/
https://sourceforge.net/projects/cbusmodule/files/source/

CHAPTER 2

Installing libcbus

Note: This section is incomplete.

2.1 All components (system install)

You need Python 3.7 or later installed. You can build the software and its dependencies with:

$ pip3 install -r requirements.txt
$ python3 setup.py install

This will install everything, including cmgttd.

2.2 C-Bus MQTT bridge only (Docker image)

See Running in Docker.

cbus Documentation, Release 0.2-dev

6 Chapter 2. Installing libcbus

CHAPTER 3

cmqttd

cmgttd allows you to expose a C-Bus network to an MQTT broker. This daemon replaces cdbusd (which required
D-Bus) as the abstraction mechanism for all other components.

It uses Home Assistant style MQTT-JSON Light components, and supports MQTT discovery. It should also work
with other software that supports MQTT.

It can also be run inside a Docker container.
This replaces sage (our custom web interface which replaced Wiser).
cmgttd with Home Assistant has many advantages over Wiser:
» No dependency on Flash Player or a mobile app
* No requirement for an Ethernet-based PCI (serial or USB are sufficient)
* Touch-friendly UI based on Material components
* Integrates with other Home Assistant supported devices
* No hard coded back-doors or outdated software from 2006

See also: Instructions for Wiser users.

Note: Only the default lighting application is supported by emgttd. Patches welcome!

3.1 Running

cmgttd requires a MQTT Broker (server) to act as a message bus.

Note: For these examples, we’ll assume your MQTT Broker:

* is accessible via 192 .0.2. 1 on the default port (1883).

https://www.home-assistant.io/
https://www.home-assistant.io/integrations/light.mqtt/#json-schema
https://www.home-assistant.io/docs/mqtt/discovery/

cbus Documentation, Release 0.2-dev

¢ does not use transport security (TLS)
* does not require authentication
This setup is not secure; but securing your MQTT Broker is out of the scope of this document.

For more information, see MQTT options.

To connect to a serial or USB PCI connected on /dev/ttyUSBO, run:

’$ cmgttd —--broker-address 192.0.2.1 --broker-disable-tls --serial /dev/ttyUSBO

To connect to a CNI (or PCI over TCP) listening at 192.0.2.2:10001, run:

’$ cmgttd —--broker—-address 192.0.2.1 —--broker-disable-tls —--tcp 192.0.2.2:10001

If you’re using Docker, the container also needs a route to the CNI’s IP address.

Tip: If you haven’t installed the library, you can run from a git clone of 1ibcbus source repository with:

$ python3 -m cbus.daemons.cmgttd -b 192.0.2.1 [...]

3.1.1 For Wiser users
This software is not compatible with Wiser Home Control (Clipsal’s web interface for C-Bus). Wiser and ecmgttd
both take full control the CNI, and will interfere with one another.

Additionally, using both on the same C-Bus network (with different PCI/CNIs) may cause issues, as both presume
they are the sole source of network services such as time synchronisation.

Wiser Home Control Mk1 (5200PG)

The Wiser Home Control Mkl has an external CNI which should be usable with emqttd.
1. Switch off and completely disconnect the Wiser.
2. Disconnect the “busbar” between the Wiser and the CNL
3. Connect the CNI to power and network directly.

You may need to use Toolkit to configure the CNI with an IP address which can be accessed from the host you’re
running emqttd on. The default IP address for the CNIis 192.168.2.2.

4. Continue setting up cmgttd.

5. Once you’ve verified emgttd is working correctly, responsibly dispose of the Wiser 1 at your nearest e-waste
facility.

Warning: The Wiser 1 has very outdated and insecure software (from 2006). You should not use it under any
circumstances, or for any purpose.

8 Chapter 3. cmqttd

cbus Documentation, Release 0.2-dev

Wiser Home Control Mk2 (5200WHC2)

The Wiser Home Control Mk2 has an internal CNI which cannot be used, because the Wiser’s software conflicts with
cmgttd.

You will need to get a real, standalone PCI or CNL

Tip: The author of this software does not have access to any Wiser hardware anymore, and the Wiser 2’s list price of
2000 AUD is far beyond the budget for this project.

Hint hint, Schneider Electric. .. we should talk :)

3.2 Configuration

cmgttd has many command-line configuration options.

A complete list can be found by running cmgttd —--help.

3.2.1 C-Bus PCI options

One of these must be specified:

——serial DEVICE
Serial device that the PCI is connected to, eg: /dev/ttyUSBO.

USB PClIs (5500PCU) act as a SiLabs cp210x USB-Serial adapter, its serial device must be specified here.

——tcp ADDR:PORT
IP address and TCP port where the PCI or CNI is located, eg: 192.0.2.1:10001.

Both the address and the port are required. CNIs listen on port 10001 by default.

See also: Instructions for Wiser users.

3.2.2 MQTT options
——broker—-address ADDR
Address of the MQTT broker. This option is required.

—-broker-port PORT
Port of the MQTT broker.

By default, this is 8883 if TLS is enabled, otherwise 1883.

—-broker-disable-tls
Disables all transport security (TLS). This option is insecure!

By default, transport security is enabled.

—-broker-auth FILE
File containing the username and password to authenticate to the MQTT broker with.

This is a plain text file with two lines: the username, followed by the password.

If not specified, password authentication will not be used.

3.2. Configuration 9

cbus Documentation, Release 0.2-dev

——broker—-ca DIRECTORY
Path to a directory of CA certificates to trust, used for validating certificates presented in the TLS handshake.

If not specified, the default (Python) CA store is used instead.
—-broker-client-cert PEM

——broker-client-key PEM
Path to a PEM-encoded client (public) certificate and (private) key for TLS authentication.

If not specified, certificate-based client authentication will not be used.

If the file is encrypted, Python will prompt for the password at the command-line.

3.2.3 Labels

——-project-file CBZ
Path to a C-Bus Toolkit project backup file (CBZ) to use for labelling group addresses.

This doesn’t affect the entity paths or unique IDs published in MQTT.
Only single-network projects using the lighting application are supported. DLT labels are not supported.

For group addresses with unknown names, or if no project file is supplied, generated names like C-Bus Light
001 will be used instead.

Tip: If you don’t have a project file backup from your installer, you can always rename entities from within Home
Assistant itself.

This labels are not stored on C-Bus units, so Toolkit cannot download this information from the network.

3.2.4 Time synchronisation

By default, emgttd will periodically provide a time signal to the C-Bus network, and respond to all time requests.

Local time is always used for time synchronisation. You can specify a different timezone with the TZ environment
variable.
C-Bus’ time implementation has many limitations:

e C-Bus date values and time values are two separate network variables — there is no analog to Python’s

datetime.datetime type. This can trigger race conditions around midnight if the messages are not handled
atomically by receivers.

cmqgttd will always send the date and time as a single message, in an attempt to mitigate this issue.

e C-Bus time values have an optional “daylight saving time” flag, with three states: “no daylight saving offset
applied”, “time advanced by 1 hour for daylight saving”, and “unknown”.

Because this is cannot be used to present daylight saving time properly (eg: Lord Howe Island turns their clocks
forward 30 minutes for DST), and there are far too many edge cases with time zone handling, cmgttd will
always report “unknown”, in an attempt to make sure C-Bus units do not attempt any time conversions.

* C-Bus does not support leap seconds. You can mitigate this by synchronising your clock using an NTP server
with leap second smearing.

To schedule scenes in C-Bus, you should use something like Home Assistant, rather than embedded controllers directly
attached to the C-Bus network.

10 Chapter 3. cmqttd

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html
https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html
https://developers.google.com/time/smear

cbus Documentation, Release 0.2-dev

——timesync SECONDS
Periodically sends an unsolicited time signal to the C-Bus network.

By default, this is every 300 seconds (5 minutes).
If set to 0, emgttd will not send unsolicited time signals to the C-Bus network.

—-no-clock
Disables responding to time requests from the C-Bus network.

3.2.5 Logging
—-log-file FILE
Where to write the log file. If not specified, logs are written to st dout.

—--verbosity LEVEL
Verbosity of logging to emit. If not specified, defaults to INFO.

Options: CRITICAL, ERROR, WARNING, INFO, DEBUG

3.3 Using with Home Assistant

cmgttd supports Home Assistant’s MQTT discovery protocol.

To use it, just add a MQTT integration using the same MQTT Broker as emqttd with discovery enabled (this is
disabled by default). See Home Assistant’s documentation for more information and example configurations.

Once the integration and emgttd are running, each group addresses (regardless of whether it is in use) will automat-
ically appear in Home Assistant’s UI as two components:

e lights: 1ight.cbus_{{GROUP_ADDRESS}} (eg: GA1=1ight.cbus_1)

This implements read / write access to lighting controls on the default lighting application. “Lighting Ramp”
commands can be sent via the standard brightness and transition extensions.

By default, these will have names like C-Bus Light 001.

e binary sensors: binary_sensor.cbus_{{GROUP_ADDRESS}} (eg: GA 1 = binary_sensor.
cbus_1).

This is a binary, read-only interface for all group addresses.

An example use case is a PIR (occupancy/motion) sensor that has been configured (in C-Bus Toolkit) to actuate
two group addresses — one for the light in the room (shared with an ordinary wall switch), and which only reports
recent movement.

cmgttd doesn’t assign any class to this component, so this can be used however you like. Any brightness value
is ignored.

By default, these will have names like C-Bus Light 001 (as binary sensor).

All elements can be renamed and customized from within Home Assistant.

3.4 Running in Docker

This repository includes a Dockerfile, which uses a minimal Alpine Linux image as a base, and contains the bare
minimum needed to make ecmgttd work.

3.3. Using with Home Assistant 11

https://www.home-assistant.io/docs/mqtt/discovery/
https://www.home-assistant.io/docs/mqtt/discovery/
https://www.home-assistant.io/docs/mqtt/broker
https://www.home-assistant.io/integrations/light.mqtt/
https://www.home-assistant.io/integrations/binary_sensor.mqtt/
https://www.home-assistant.io/integrations/binary_sensor/#device-class
https://www.home-assistant.io/docs/configuration/customizing-devices/
https://alpinelinux.org/

cbus Documentation, Release 0.2-dev

On a system with Docker installed, clone the libcbus git repository and then run:

docker build -t cmgttd .

This will download about 120 MiB of dependencies, and result in about 100 MiB image (named cmgttd).
The image’s startup script (entrypoint-cmgttd. sh) uses the following environment variables:

TZ
The timezone to use when sending a time signal to the C-Bus network.

This must be a tz database timezone name (eg: Australia/Adelaide). The default (and fall-back) time-
zone is UTC.

SERIAL_PORT
The serial port that the PCI is connected to. USB PCls appear as a serial device (/dev/ttyUSBO).

Docker also requires the ——device option so that it is forwarded into the container.
This is equivalent to cmgttd —-serial. Either this or CNI_ADDR is required.

CNI_ADDR
A TCP host :port where a CNI is located.

This is equivalent to cmgttd ——tcp. Either this or SERTAL_PORT is required.
See also: Instructions for Wiser users.

MQTT_SERVER
IP address where the MQTT Broker is running.

This is equivalent to cmgttd —-broker-address. This environment variable is required.

MOTT_PORT
Port address where the MQTT Broker is running.

This is equivalent to cmgttd —-—-broker-port.

MQTT_ USE_TLS
If set to 1 (default), this enables support for TLS.

If set to 0, TLS support will be disabled. This is equivalent to cmgttd —-broker-disable-tls.

CBUS_CLOCK
If set to 1 (default), emgttd will respond to time requests from the C-Bus network.

If set to 0, emgttd will ignore time requests from the C-Bus network. This is equivalent to cmgttd
—-—no-clock.

CBUS_TIMESYNC
Number of seconds to wait between sending an unsolicited time signal to the C-Bus network.

If set to 0, emgttd will not send unsolicited time signals to the C-Bus network.
By default, this will be sent every 300 seconds (5 minutes).
This is equivalent to cmgttd ——timesync.

The image is configured to read additional files from /et c/cmgttd, if present. Use Docker volume mounts to make
the following files available:

/etc/cmgttd/auth Username and password to use to connect to an MQTT broker, separated by a newline char-
acter.

If this file is not present, then cmgttd will try to use the MQTT broker without authentication.

This is equivalent to cmgttd —-—-broker-auth.

12 Chapter 3. cmqttd

https://github.com/micolous/cbus
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://docs.docker.com/engine/reference/commandline/run/#mount-volume--v---read-only

cbus Documentation, Release 0.2-dev

/etc/cmgttd/certificates A directory of CA certificates to trust when connecting with TLS.
If this directory is not present, the default (Python) CA store will be used instead.
This is equivalent to cmgttd —--broker-—ca.

/etc/cmgttd/client .pem, /etc/cmgttd/client . key Client certificate (pem) and private key (key) to
use to connect to the MQTT broker.

This is equivalent to cmgttd —--broker—client-cert and cmgttd —--broker—-client—-key.
/etc/cmgttd/project.cbz C-Bus Toolkit project backup file to use as a source for labelling group addresses.

This is is equivalent to cmgttd ——project—file.

Note: All file and directory names are case-sensitive, and must be lower case.

3.4.1 Docker usage examples

To use a PCI on /dev/ttyUSBO, with an unauthenticated and unencrypted MQTT Broker at 192.0.2. 1, and the
time zone set to Australia/Adelaide:

docker run —--device /dev/ttyUSBO —-e "SERIAI_PORT=/dev/ttyUSBO" \
—-e "MQTT_SERVER=192.0.2.1" -e "MQTT_USE_TLS=0" \
—-e "TZ=Australia/Adelaide" cmgttd

To supply MQTT broker authentication details, create an /etc/cmgttd/auth file to be shared with the container
as a Docker volume:

mkdir -p /etc/cmgttd

touch /etc/cmgttd/auth

chmod 600 /etc/cmgttd/auth

echo "my-username" >> /etc/cmgttd/auth
echo "my-password" >> /etc/cmgttd/auth

HH 3= I I

Then to use these authentication details, with TLS enabled:

docker run —--device /dev/ttyUSBO —-e "SERIAI_PORT=/dev/ttyUSBO" \
—e "MQTT_SERVER=192.0.2.1" -e "TZ=Australia/Adelaide" \
-v /etc/cmgttd:/etc/cmgttd cmgttd

If you want to run the cmgttd daemon in the background, on the same device as a Home Assistant server with the
MQTT broker add-on:

docker run —-dit —--name cbus --restart=always \
——-device /dev/ttyUSBO —--network hassio \
—e "TZ=Australia/Adelaide" —-e "BROKER_USE_TLS=0" \
—e "SERIAL_PORT=/dev/ttyUSBO" \
—e "MQTT_SERVER=core-mosquitto" \
cmgttd

Note: You can verify the hostname of hassio’s MQTT broker with: # docker inspect
addon_core_mosquitto

If you want to run the daemon manually with other settings, you can run cmgt td manually within the container (ie:
skipping the start-up script) with:

3.4. Running in Docker 13

https://docs.docker.com/engine/reference/commandline/run/#mount-volume--v---read-only

cbus Documentation, Release 0.2-dev

docker run -e "TZ=Australia/Adelaide" cmgttd cmgttd —--help

Note:

When running without the start-up script:

you must write cmgttd twice: first as the name of the image, and second as the program inside the image to
run.

none of the environment variables (except TZ) are supported — you must use cmgqttd command-line options
instead.

files in /etc/cmgttd are not used unless equivalent cmgqttd command-line options are manually specified.

14

Chapter 3. cmqttd

CHAPTER 4

Hacking

Information about using the hardware and software.

4.1 Official documentation

You should implement software in conjunction with reading the official documentation. This library attempts to follow
its terminology and structures, so understanding what is happening on a lower level is needed particularly when using
the lower level interfaces in this library.

There is a large amount of documentation in there that says “these items are deprecated and shouldn’t be used”. I've
noticed that C-Gate and Toolkit will interact with the hardware in these “deprecated” ways. ..

This doesn’t mean implement the library to talk this way. You should implement it properly. Just be aware than when
working with implementing a fake PCI or parsing out packets that Clipsal’s software generated, be aware they’ll do
strange and undocumented things.

4.1.1 Geoffry Bennett’s reverse engineering notes (2001 - 2004)
Geoffry Bennett gave a talk at a LinuxSA meeting in 2001 and at Linux.conf.au 2004 about his experiences with
reverse engineering C-Bus. At the time there was no official protocol documentation available.

The Linux.conf.au 2004 notes cover a lot more information, includes some information about dumping and reverse
engineering the contents of NVRAM in units, a Perl client library, and an emulator used for older versions of the
Clipsal programming software.

4.2 CNI / network protocol

The C-Bus Toolkit software has a CNI (network) interface mode, which is just the serial protocol over a TCP socket.
Some of the tools here support running in TCP mode with —t.

There’s also a discovery protocol, however this has not been implemented yet. Patches welcome. :)

15

https://updates.clipsal.com/ClipsalSoftwareDownload/DL/downloads/OpenCBus/OpenCBusProtocolDownloads.html
http://www.linuxsa.org.au/meetings/cbus.txt
ftp://mirror.linux.org.au/pub/linux.conf.au/2004/papers/cbus/
ftp://mirror.linux.org.au/pub/linux.conf.au/2004/papers/cbus/

cbus Documentation, Release 0.2-dev

4.3 Setting up a fake CNI and sniffing the protocol

If you want to see how Toolkit interacts with a Serial PCI, use the tcp_serial_redirect.py script from the
pySerial example scripts.

For example:

$ python tcp_serial_redirect.py -p /dev/ttyUSBO -P 10001

Congratulations, you now have turned your computer and a 5500PC into a 5500CN without writing a single line of
custom code, and saved about 2003$. Even a Beaglebone can be had for less than 2008. ;)

Go into Toolkit, set the Default Interface type to “IP Address (CNI)” with the IP and port of the machine running the
serial redirector.

You can then use tools like Wireshark to monitor interactions with the C-Bus PCI, instead of using kernel hacks to
sniff serial, other redirects, or wiring up your own serial sniffer device. This will aid if you wish to use undocumented
commands, or isolate issues in the Clipsal documentation.

You could also use this with tools like C-Gate to get a higher level interface with the C-Bus PCIL.

4.4 USB support / 5500PCU

Clipsal’s driver is not digitally signed.

It uses silabser. sys on Windows, which corresponds to a Silicon Labs CP210X USB-serial bridge. cbususb.
inf lists the following products:

* 10C4:EA60: Generic SiLabs CP210X

¢ 166A:0101: C-Bus Multi-room Audio Matrix Switcher (560884)

* 166A:0201: C-Bus Pascal/Programmable Automation Controller (5500PACA)

* 166A:0301: C-Bus Wireless PC Interface (5800PC). This appears to be an unreleased product.
* 166A:0303: C-Bus Wired PC Interface (5500PCU)

e 166A:0304: C-Bus Black & White Touchscreen Mk2 (5000CT2)

* 166A:0305: C-Bus C-Touch Spectrum Colour Touchscreen (C-5000CT2)

e 166A:0401: C-Bus Architectural Dimmer (L51xx series)

4.4.1 Linux driver

The cp210x kernel module in Linux 2.6.30 and later supports this chipset. However, only the generic adapter and
5500PCU device IDs are included with the kernel for versions before 3.2.22 and 3.5-rc6.
Your distribution vendor may backport the patches in to other kernel versions.

To see which devices your kernel supports, run the following command:

’$ /sbin/modinfo cp210x | grep v166A

If the following is returned, you only have support for the S500PCU:

’alias: usb:v166Ap0303d+dc+dscrdp*ic+iscxipx*

16 Chapter 4. Hacking

http://pyserial.sourceforge.net/examples.html#tcp-ip-serial-bridge
https://www.clipsal.com/Trade/Products/ProductDetail?catno=5500PC
https://updates.clipsal.com/ClipsalOnline/Files/Brochures/W0000348.pdf
http://beagleboard.org/bone
http://www.wireshark.org/
http://updates.clipsal.com/ClipsalOnline/ProductInformation.aspx?CatNo=560884/2&ref=
http://updates.clipsal.com/ClipsalOnline/ProductInformation.aspx?CatNo=5500PACA&ref=
https://www.clipsal.com/Trade/Products/ProductDetail?catno=5500PCU
http://updates.clipsal.com/ClipsalOnline/ProductInformation.aspx?CatNo=5000CT2WB&ref=
http://updates.clipsal.com/ClipsalOnline/ProductInformation.aspx?CatNo=C-5000CTDL2&ref=
https://www.clipsal.com/Trade/Products/ProductDetail?catno=5500PCU
https://www.clipsal.com/Trade/Products/ProductDetail?catno=5500PCU

cbus Documentation, Release 0.2-dev

If more lines come back, then your kernel supports all the hardware that is known about at this time.

4.4.2 macOS driver

SiLabs’ macOS drivers (v5.2.3) do not list any Clipsal devices in Info.plist.
Modifying this file will cause the kext to fail signature verification.

You may be able to use a modified version of this driver if you disable System Integrity Protection from the Recovery
OS, but this could have serious repercussions for the security and reliability of your device.

4.5 Unit Tests

Tests use the unittest package. To run them:

’$ python3 -m unittest

This targets Python 3.7 and later. Python 2.x are no longer supported.

When implementing a new application, you should copy all of the examples given in the documentation of that appli-
cation into some tests for that application. Be careful though, there are sometimes errors in Clipsal’s documentation,
so double check to make sure that the examples are correct. If you find errors in Clipsal’s documentation, you should
email them about it.

4.5. Unit Tests 17

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

cbus Documentation, Release 0.2-dev

18 Chapter 4. Hacking

CHAPTER B

CNI Discovery

At the moment this is a rather unorganised set of notes while I’m still figuring out the protocol.

I’ve started working on a test program for dissecting the protocol in experiments/cni_discovery.py.

5.1 Discovery Query

A client will broadcast a UDP packet on 255.255.255.255:20050.

Data structure is as follows:

char([4] command = "CB 80 00 00" // CBUS_DISCOVERY_QUERY
char[4] unknownl = "00 00 00 0O"

char[4] unknown2 = "01 01 01 OB"

char[4] unknown3 = "01 1D 80 01"

char[3] unknown4 = "02 47 FE"

Example packet:

cb:80:00:00:00:00:00:00:01:01:01:0b:01:1d:80:01:02:47:£ff

Oxcb, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x01, Ox01, 0x01, OxOb, O0x01, Ox1ld, 0x80, 0x01,
0x02, 0x47, Oxff

5.2 Discovery Reply

Replies are sent back to the querying client on port 20050.

Values are in big-endian format (network byte order):

19

cbus Documentation, Release 0.2-dev

char[4]
char[4]
char[4]
char
char[4]
uintl6
char[4]
char
char[4]
char[2]

magic
unknownl
unknown?2

product_

unknown4
port

unknownb5
unknowné6
unknown?
unknown8

= 0Oxcb, 0x81, 0x00, 0x00
= 0x00, 0x00, 0x00, 0xO01
= 0x81, 0x01, 0x00, 0xO01

id = 0x03 // 0x01

= 0x81, 0x0b, 0x00, 0x02

= 0x27, 0x11l (10001)

= 0x81, 0xl1ld, 0x00, O0x01
= 0x00 // 0x01 (not a flag for "in use")
= 0x80, 0x01, 0x00, 0x02

= 0x66, Oxle // 0x8c,

—appear to be used)

0x26

CBUS_DISCOVERY_REPLY
// 0x20, 0xe8, 0Oxf5, 0x52

(may be a checksum, but doesn't

Product IDs:
e 01: CNI2

* 02: Hidden — Toolkit ignores packets with this product ID. May be used for internal development.
e 03: WISER

¢ Other values: “unknown”

Example packet data:
Recv
Client 1 (172.26.1.81)

CNI2 port 10001,

Oxcb, 0x81, 0x00,
0x81, 0x01, 0xO00,
0x02, 0x27, Ox1l,
0x80, 0x01, 0x00,

Client 2

"not accessible" (controlled by a WISER)

0x00, 0x20, 0xe8, O0xf5,
0x01, 0x01, 0x81, 0xO0b,
0x81, Oxld, 0x00, 0x01,
0x02, 0x8c, 0x26

(172.26.1.80)
WISER port 10001

Oxcb, 0x81, 0x00,
0x81, 0x01, 0x00,
0x02, 0x27, 0x11,
0x80, 0x01, 0x00,

0x00, 0x00, 0x00, 0x00,
0x01, 0x03, 0x81, O0x0b,
0x81, Oxld, 0x00, 0x01,
0x02, 0x66, Oxle

0x52,
0x00,
0x01,

0x01,
0x00,
0x00,

b = "\xcb\x81\x00\x00\x00\x00\x00\x01\x81\x01\x00\x01\x03\x81\x0b\x00\x02
—'"\x11\x81\x1d\x00\x01\x00\x80\x01\x00\x02f" +

"\xle'

20

Chapter 5. CNI Discovery

CHAPTER O

Wiser

Note: This is an incomplete collection of notes from reverse engineering the Wiser’s firmware.
It has not been actively worked on in some years, and the author no longer has access to Wiser hardware.

This library is not capable of running on Wiser — and this project’s C-Bus to MQTT bridge can be used with Home
Assistant and entirely replaces the need for Wiser.

It is provided in the hope it could be useful to others, and to serve as a warning against using Wiser hardware. :)

The Wiser is a re-badged SparkLAN WRTR-501 802.11b/g/draft-n WiFi Router with custom firmware. It runs an
embedded Linux system, with an expanded web interface for hosting Flash/XMLSocket based control of C-Bus.

According to the source code release from Clipsal, this runs Linux 2.6.17.14. The kernel configuration indicates that
the board is a £v13xx ARM system. This is also used by:

e Airlink101 AR680OW
* PCi MZK-W04N

XMLSocket is also used by the iPhone version of the control software.

Note: In XML outputs in this document, new-line characters and basic formatting whitespace has been added to
improve readability. The original data does not contain this, unless otherwise indicated.

6.1 Downloading SWFs

First step is you are directed to the page /clipsal/resources/wiserui.html. This in turn loads the SWF
/clipsal/resources/wiserui.swf.

As this is SWF, there is a cross-domain access policy in place to allow the SWF to connect back to the server on other
ports:

21

https://www.home-assistant.io/docs/mqtt/discovery/
https://www.home-assistant.io/docs/mqtt/discovery/
http://www.sparklan.com/download/wrtr_501_11n_ap_router.pdf

cbus Documentation, Release 0.2-dev

<cross—domain-policy>
<allow-access—from domain="+" secure="false" to-ports="8888,8889"/>
</cross—-domain-policy>

This configuration disables all cross-domain security for requests to the Wiser. You could use this to write your own
implementation of the Wiser control UI and have it connect back to Wiser’s IP. This could also be used to allow any
website on the internet you visit to make cross-origin requests to your browser.

The resources and API classes are stored in /clipsal/resources/resources.swf. This contains things like
the cbus_controller class which is used to establish Flash XMLSocket connections.

6.2 Protocol

6.2.1 Discovery and Handshake

After the SWF is started, it loads the configuration file from /clipsal/resources/local_config.xml. This
looks like:

<local_config version="1.0">
<wiser ip="XXX.XXX.XXX.XXX" port="8888" remote_url="" remote_port="8336"
remote="0" wan="0"/>
<client name="Web UI" fullscreen="0" http_auth="0" local_file_access="1"
local_project="0" local_skin_definition="0"/>
</local_config>

Here we see the internal IP address of the Wiser, and the port that is used for XMLSockets requests (port).
remote_port indicates the port used by the CFTP daemon.

6.2.2 Authentication

There is a basic authentication system in place on some of the sockets. This can be established by retrieving the key
from /clipsal/resources/projectorkey.xml. This file looks like:

<cbus_auth_data value="0x12345678"/>

This projector key is generated when a project file is first created by PICED. The projector key is static for all projects
created during a particular execution of PICED.

Rebooting Wiser or changing the HTTP password never changes this key. Once someone has this key, they can use
it to access Wiser over XMLSocket in perpetuity.

The only way to change it is to re-start PICED (if it was already running), create an entirely new project file, and
transfer this to the Wiser.

6.2.3 Connecting

There is now enough information to connect to the XMLSocket service on port 8888 of the Wiser (or “port” in
local_config.xml).

So to start the connection we need to send some commands off to the server to handshake.

This starts with a command called <cbus_auth_cmd>. This has three attributes, required exactly in this order:

22 Chapter 6. Wiser

cbus Documentation, Release 0.2-dev

<cbus_auth_cmd value="0x12345678" cbc_version="3.7.0" count="0" />

* value is the value of the cbus_auth_data retrieved in the previous step.

* cbc_version is the version of the SWF being used. This is found in wiserui.swf, in the variable
cbc_version.

e count is the number of times that this session has attempted to authenticate. Set this to O.

You could also request the project files and skin files in one shot, like this:

<cbus_auth_cmd value="0x12345678" cbc_version="3.7.0" count="0" />
<project-file-request />
<skin-file-request />

The Wiser responds with a message like this:

<ka cbus_connected="1" />

<cbd_version version="Kona 1.24.0" />

<net_status cni_transparent="0" cni="1" cftp="1" cbus="1" ntp="0" />

<cbus_event app="0xdf" name="cbusTimeChanged" time="120103102012.43" dst="0" ntp="0" /

o>

6.2.4 Project and Skin

It also returns a <Touchscreen> XML which is a form of the project file, and a <skin> XML which contains
localised strings and resource image references.

This can also be downloaded from /clipsal/resources/project.xml and /clipsal/resources/
skin_definition.xml, soyou can justestablish a connection without requesting these files over the XMLSocket.
Potentially this could be more reliable.

The project file contains all of the programming in use on the Wiser, button assignments and schedules. It can also
contain additional metadata about the installation, if the installer has filled this in.

6.2.5 XMLSocket protocol for dummies
Adobe’s documentation describes the XMLSocket protocol as sending XML documents in either direction on the TCP
socket, terminated by a null character.

It is like a simple version of WebSockets — client and server may send data at any time, there is no synchronous
response mechanism, and very easy to implement.

The XML documents sent do not require the typical XML stanzas at the start of the file specifying encoding, and may
also contain multiple top-level (document) elements.

There are third-party client and server libraries available for this protocol.

6.3 Getting a shell

There is console access available via a web interface on the Wiser, using /console.asp. It appears to be taken
from some Belkin or Linksys reference firmware image.

Redirection of output to a file using > doesn’t work correctly in the shell. Regular pipes (|) do work.

Only stdout is displayed, not stderr.

6.3. Getting a shell 23

cbus Documentation, Release 0.2-dev

6.3.1 NVRAM

You can dump the NVRAM:

$ nvram show

wan_proto=dhcp
wan_ipaddr=0.0.0.0
wan_netmask=0.0.0.0
wan_gateway=0.0.0.0
wan_winsserv=

6.4 CFTP

CFTP is a service which acts as a back-door into the device. It runs on port 8336, and is managed by the service
cftp_daemon.

It has a hard-coded password (b1oop) to access the service.

Despite the name, it doesn’t actually implement FTP — it is used by Clipsal’s programming software in order to manage
the device. It appears to have the following functionality:

* Manage port forwards inside of the network when the device is acting as the router for the network. Unknown
how this is controlled.

» Reflash the contents of partition 6 of FLASH (label: clipsal). Appears to be a gzip-compressed tarball,
which gets extracted to /www/clipsal/resources.

Communication with the server is done with a simple text-based protocol, with the UNIX newline character indicating
the end of command. DOS or other style line feeds do not work.

If the daemon does not understand your command, it will simply send no response.

6.4.1 Startup process

On startup, the process will:

1. Delete /tmp/*.tar.gz.

2. Copy the contents of /dev/mtblock/6to /tmp/test.cta.
3. Mount a new ramfs to /www/clipsal/resources/
4

. Extract settings.conf from the gzip-compressed tarball /tmp/test.cta to /www/clipsal/
resources/.

e

Read daemon configuration from settings.conft.

6. Extract all files from the tarball to /www/clipsal/resources/.

6.4.2 Unauthenticated state

Connecting to the service yields a welcome message:

200 Welcome

24 Chapter 6. Wiser

cbus Documentation, Release 0.2-dev

PASS

Client command:

’PASS bloop

The server will respond that you are logged in successfully, and transition your connection to the authenticated state:

’201 Logged in

Note: There is no way to change this password. It is hard coded in Wiser’s firmware.

Sending other passwords yield no response.

6.4.3 Authenticated state

When in the authenticated state, the network code appears to be far less robust. Sending large commands causes the
daemon to crash.

This may be an effective and easy way to disable cftp_daemon on the device.

PASS

Client command:

’PASS bloop

Server response:

’201 Logged in

Transitions to the authenticated state. Has no effect in authenticated mode.

Note: There is no way to change this password. It is hard coded in Wiser’s firmware.

Sending other passwords yield no response.

VERINFO

Client command:

VERINFO

Server response:

202-HomeGateVersion=4.0.41.0
202-CTCServerVersion=Kona_1.24.0
202-UnitName=EXAMPLE

202 WindowsOSVersion=5.1.2600 Service Pack 2

Retrieves information about the version of CFTP running on the Wiser, and the C-Bus network’s project name.

The WindowsOSVersion information is a hard-coded string.

6.4. CFTP 25

cbus Documentation, Release 0.2-dev

HGSTATUS

Client command:

HGSTATUS

Server response:

202-HGRUNNING=False
202-HGLOGGING=False
202 CURRPROJ=C:\HomeGate\Projects\Current \EXAMPLEproj.tar.gz

Retrieves the current project name running on the Wiser, and status of “HG”? This is hard coded to always return
False to both HGRUNNING and HGLOGGING.

The path is faked by the daemon, with “EXAMPLE” replaced by the project name.

GETFILELIST

Client command:

’GETFILELIST

Server response:

’202 FILE1=C:\HomeGate\Projects\Current\EXAMPLEproj.tar.gz

Retrieves a list of “files” on the device associated with the project. This only returns the project file.

The path is faked by the daemon, with “EXAMPLE” replaced by the project name.

GETPROJ

Client command:

GETPROJ

Server response:

202-Port=8337
202 FILE=C:\HomeGate\Projects\Current\EXAMPLEproj.tar.gz

Returns the “project filename” for the contents of flash partition 6. The path information is hard coded and fake, with
“EXAMPLE” replaced by the project name.

INSTALL

Client command:

’INSTALL PROJECT example.tar.gz

Server response:

’202 Port=8337

26 Chapter 6. Wiser

cbus Documentation, Release 0.2-dev

Starts an out of band transfer for overwriting the Wiser’s project file.

The server opens up another TCP server on a different port (on Wiser, this is always 8337) in order to accept the file
transfer out of band.

6.4.4 Project file transfer

Project file transfer is done on another port (always 8337), and initiated by the INSTALL command.

The client immediately sends:

FILE example.tar.gz

This is then immediately followed by a UNIX newline character, and then the file length as a 32-bit unsigned big-
endian integer.

Files must not be bigger than 512kB, or the transfer will be rejected by the Wiser. File names must end in . tar.gz.

Projects must also not extract to a size greater than about 1 MiB: Wiser stores the contents of this archive in ramfs,
so larger archives will use all available RAM on the Wiser, and cannot be freed, leading to Linux’s oomkiller to
run or processes to fail to dynamically allocate memory. This has the potential in turn to partially brick the Wiser —
cftp_daemon will not be able to copy a new project file into RAM temporarily for flashing, and may be permanently
stuck in this state. This partial brick state could probably gotten around by writing NULL over the contents of /dev/
mtdblock/ 6, then transferring a new project file.

6.5 Firmware image

Firmware image for the device is bundled with the PICED software as Firmware/firmware_1_24_0.img.

The tool binwalk shows the layout of the firmware image:

0x13 ulmage header, header size: 64 bytes, header CRC: 0x2781C02C,
created: Mon Oct 3 11:26:33 2011, image size: 722439 bytes,
Data Address: 0x40008000, Entry Point: 0x40008000,
data CRC: 0xF7547123, 0S: Linux, CPU: ARM,
image type: OS Kernel Image, compression type: lzma,
image name: Linux-2.6.17

0x53 LZMA compressed data, properties: 0x5D,
dictionary size: 8388608 bytes, uncompressed size: 2015280 bytes

0xC0013 Squashfs filesystem, little endian, version 2.1,
size: 1736392 bytes, 435 inodes, blocksize: 65536 bytes,
created: Mon Oct 3 11:27:23 2011

Appears to be a uBoot image with some extra headers on the image.

6.5.1 Extracting root filesystem

Warning: The links in this section are broken as Google Code has shut down.

6.5. Firmware image 27

https://github.com/ReFirmLabs/binwalk

cbus Documentation, Release 0.2-dev

The version of squashfs used by the root filesystem is very old, and current Linux kernels are incapable of mounting
it. It requires an LZMA version of squashfs-2.1 in order to extract it, available from firmware-mod-kit. Their SVN
repository contains all the components needed:

svn co https://firmware-mod-kit.googlecode.com/svn/trunk/src/lzma/

svn co https://firmware-mod-kit.googlecode.com/svn/trunk/src/squashfs-2.1-r2/
cd squashfs-2.1-r2

make

v v v W»n

Once built, extract the root filesystem with:

$ binwalk -D squashfs:squashfs firmware_1_24_0.img
$./squashfs-2.1-r2/unsquashfs-1lzma C0013.squashfs

This will then give an extracted copy of the root filesystem in the directory squashfs—-root.

6.5.2 Filesystem observations

These are things that need some more investigation:

e NTP client which has 32 hard-coded NTP server IP addresses.

28 Chapter 6. Wiser

https://code.google.com/p/firmware-mod-kit/

CHAPTER /

dump_labels utility

dump_labels parses a Toolkit backup file (CBZ) and prints out group and unit address labels into a JSON file.

It will remove all unneeded programming markup from the CBZ, and leave a skeleton of information which can be
used in conjunction with the library and other applications.

7.1 Invocation

29

cbus Documentation, Release 0.2-dev

30 Chapter 7. dump_labels utility

CHAPTER 8

libcbus module index

8.1 cbus Package

This is the package where all C-Bus modules are defined.

8.1.1 Common functions
cbus.common defines various common helper utilities used by the library, and constants required to communicate with
the C-Bus network.

The majority of the functionality shouldn’t be needed by your own application, however it is used internally within
the protocol encoders and decoders.

class cbus.common.Application
Bases: enum. IntEnum

An enumeration.
CLOCK = 223
ENABLE = 203
LIGHTING = 56
LIGHTING_30 = 48
LIGHTING_31 = 49
LIGHTING_32 = 50
LIGHTING_ 33 = 51
LIGHTING_34 = 52
LIGHTING_35 = 53

LIGHTING_36 = 54

31

cbus Documentation, Release 0.2-dev

LIGHTING_37
LIGHTING_38
LIGHTING_39
LIGHTING_3a
LIGHTING_3b
LIGHTING_3c
LIGHTING_3d
LIGHTING_3e
LIGHTING_3f
LIGHTING_40
LIGHTING_41
LIGHTING_42
LIGHTING_43
LIGHTING_44
LIGHTING_45
LIGHTING_46
LIGHTING_47
LIGHTING_48
LIGHTING_49
LIGHTING_4a
LIGHTING_4b
LIGHTING_4c
LIGHTING_4d
LIGHTING_4e
LIGHTING_4f
LIGHTING_50
LIGHTING_51
LIGHTING_52
LIGHTING_53
LIGHTING_54
LIGHTING_55
LIGHTING_56
LIGHTING_57
LIGHTING_58
LIGHTING_59
LIGHTING_5a

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
920

32

Chapter 8. libcbus module index

cbus Documentation, Release 0.2-dev

LIGHTING_5b = 91
LIGHTING_5c = 92
LIGHTING_5d = 93
LIGHTING_5e = 94
LIGHTING_5f = 95
LIGHTING_FIRST = 48
LIGHTING_LAST = 95
MASTER_APPLICATION = 255
STATUS_REQUEST = 255
TEMPERATURE = 25

class cbus.common.CAL
Bases: enum. IntEnum

An enumeration.
ACKNOWLEDGE = 50
EXTENDED_STATUS = 224
GET_STATUS = 42
IDENTIFY = 33

RECALL = 26

REPLY 128

RESET 8
STANDARD_STATUS = 192

class cbus.common.ClockAttribute
Bases: enum. IntEnum

An enumeration.
DATE = 2
TIME = 1

class cbus.common.ClockCommand
Bases: enum. IntEnum

An enumeration.
REQUEST_REFRESH = 17
UPDATE_NETWORK VARIABLE = 8

class cbus.common.DestinationAddressType
Bases: enum. IntEnum

Destination Address Type (DAT).
Ref: Serial Interface Guide, s3.4. Other values reserved.
POINT TO MULTIPOINT = 5

POINT_TO_POINT = 6

8.1. cbus Package 33

cbus Documentation, Release 0.2-dev

POINT_TO_POINT_TO_MULTIPOINT = 3
UNSET = 0

class cbus.common.EnableCommand
Bases: enum. IntEnum

An enumeration.
SET NETWORK VARIABLE = 2

class cbus.common.ExtendedCALType
Bases: enum. IntEnum

An enumeration.
BINARY = 0
LEVEL = 7

class cbus.common.GroupState
Bases: enum. IntEnum

An enumeration.
ERROR = 3
MISSING = 0
OFF = 2

ON =1

class cbus.common.IdentifyAttribute
Bases: enum. IntEnum

IDENTIFY attributes.

See Serial Interface Guide, s7.2.
CUR_LVL = 15

DELAYS = 12
DSI_STATUS = 17
EXTENDED = 4

FIRMWARE VER = 2
GAV_CURRENT = 8

GAV_PHY ADDR

10
GAV_STORED = 9
LOGIC_ASSIGN = 11

MANUFACTURER

1]
o

MAX LVL = 14

MIN_LVL 13

NET_TERM LVL = 5

]
~

NET_VOLTAGE

OUT_SUMMARY = 16

34 Chapter 8. libcbus module index

cbus Documentation, Release 0.2-dev

SUMMARY = 3
TERM _LVL = 6
TYPE =1

class cbus.common.LightCommand
Bases: enum. IntEnum

An enumeration.
LIGHT_ LABEL = 160
OFF =1

ON = 121
RAMP_00_04 = 10
RAMP_00_08 = 18
RAMP_00_12 = 26
RAMP_00_20 = 34
RAMP_00_30 = 42
RAMP_00_40 = 50
RAMP_01_00 = 58
RAMP_01_30 = 66
RAMP_02_00 = 74
RAMP_03_00 = 82
RAMP_05_00 = 90
RAMP_07_00 = 98
RAMP_10_00 = 106
RAMP_15_00 = 114
RAMP_17_00 = 122
RAMP_FASTEST = 2
RAMP_INSTANT = 2
RAMP_SLOWEST = 122
TERMINATE RAMP = 9

class cbus.common.PriorityClass
Bases: enum. IntEnum

An enumeration.

CLASS_1 = 3
CLASS 2 = 2
CLASS 3 =1
CLASS_4 =0

cbus.common.add cbus_checksum (i: bytes) — bytes
Appends a C-Bus checksum to a given message.

8.1. cbus Package 35

cbus Documentation, Release 0.2-dev

Parameters i (bytes) — The C-Bus message to append a checksum to. Must not be in basel6
format.

Returns The C-Bus message with the checksum appended to it.
Return type bytes

cbus.common .cbus_checksum (i: bytes) — int
Calculates the checksum of a C-Bus command string.

Fun fact: C-Bus toolkit and C-Gate do not use commands with checksums.

Parameters i (bytes) — The C-Bus data to calculate the checksum of. Must not be in basel6
format.

Returns The checksum value of the given input

cbus.common.check_ga (group_addr: int) — None
Validates a given group address, throwing ValueError if not.

Parameters group_addr — Input group address to validate.
Raises ValueError — If group address is invalid

cbus.common.duration_to_ramp_rate (seconds: int) — cbus.common.LightCommand
Converts a given duration into a ramp rate code.

Parameters seconds (int)— The number of seconds that the ramp is over.
Returns The ramp rate code for the duration given.
Return type int

cbus.common.get_real_cbus_checksum (i: bytes) — int
Calculates the current C-Bus checksum for a given message which already has a checksum appended to it.

Parameters i — The C-Bus message to generate an actual checksum for, in raw format.

cbus.common.ramp_rate_ to_duration (rate: int) — int
Converts a given ramp rate code into a duration in seconds.

Parameters rate (int)— The ramp rate code to convert.
Returns The number of seconds the ramp runs over.
Return type int

Raises KeyError — If the given ramp rate code is invalid.

cbus.common.validate_cbus_checksum (i: bytes) — bool
Verifies a C-Bus checksum from a given message.

Parameters i — The C-Bus message to verify the checksum of, in raw format.
Returns True if the checksum is correct, False otherwise.

cbus.common.validate_ga (group_addr: int) — bool
Validates a given group address.

Parameters group_addr — Input group address to validate.

Returns True if the given group address is valid, False otherwise.

36 Chapter 8. libcbus module index

cbus Documentation, Release 0.2-dev

8.1.2 Protocol

C-Bus uses it’s own protocol in order to send messages over the C-Bus PHY.
This is reflected in the PC Interface protocol.

This package contains classes needed in order to operate with the protocol.

Note: The only “stable” API for this project is the C-Bus to MOTT bridge, when accessed via an MQTT broker.

The lower level APIs are subject to change without notice, as we learn new information about the C-Bus control

protocol, and functionality from other applications is brought into the C-Bus to MQOTT bridge.

base_packet: Base Packet

class cbus.protocol.base_packet .BasePacket (checksum: bool = True,
destination_address_type:
cbus.common.DestinationAddressType =
<DestinationAddressType. UNSET: 0>, rc:
int = 0, dp: bool = False, priority_class:
cbus.common.PriorityClass = <Priority-

Class.CLASS 4: 0>)
Bases: abc.ABC

encode () — bytes
encode_packet () — bytes
flags

class cbus.protocol.base_packet.InvalidPacket (payload: bytes, exception: Op-

tional[Exception] = None)
Bases: cbus.protocol.base_packet._SpecialPacket

Invalid packet data.
encode ()
exception = None

class cbus.protocol.base_packet.SpecialClientPacket
Bases: cbus.protocol.base_packet._SpecialPacket, abc.ABC

Client -> PCI communications have some special packets, which we make subclasses of SpecialClientPacket to

make them entirely separate from normal packets.
These have non-standard methods for serialisation.

class cbus.protocol.base_packet.SpecialServerPacket
Bases: cbus.protocol.base_packet._SpecialPacket, abc.ABC

PCI -> Client has some special packets that we make subclasses of this, because they’re different to regular

packets.

These have non-standard serialisation methods.

8.1. cbus Package

37

cbus Documentation, Release 0.2-dev

dm_packet: Device Management Packet

class cbus.protocol.dm_packet .DeviceManagementPacket (checksum: bool =

True, priority_class:
cbus.common. PriorityClass
= <PriorityClass.CLASS_2:
2>, parameter: int = 0, value:
int =0)

Bases: cbus.protocol.base packet.BasePacket

static decode_packet (data: bytes, checksum: bool, priority_class: cbus.common.PriorityClass)

— cbus.protocol.dm_packet.DeviceManagementPacket

encode () — bytes

packet Module

cbus.protocol.packet .decode_packet (data: bytes, checksum: bool = True, strict:
bool = True, from_pci: bool = True) — Tu-
ple[Union[cbus.protocol.base_packet.BasePacket,
cbus.protocol.cal.extended. ExtendedCAL,
cbus.protocol.cal.identify.IdentifyCAL,
cbus.protocol.cal.reply.ReplyCAL,

cbus.protocol.cal.recall.Recall CAL, None], int]
Decodes a single C-Bus Serial Interface packet.

The return value is a tuple:
0. The packet that was parsed, or None if there was no packet that could be parsed.

1. The buffer position that we parsed up to. This may be non-zero even if the packet was None (eg: Cancel
request).

Note: this decoder does not support unaddressed packets (such as Standard Format Status Replies).
Note: Direct Command Access causes this method to return AnyCAL instead of a BasePacket.
Parameters
* data - The data to parse, in encapsulated serial format.
* checksum - If True, requires a checksum for all packets

* strict — If True, returns InvalidPacket whenever checksum is incorrect. Otherwise, only
emits a warning.

* from pci - If True, parses the packet as if it were sent from/by a PCI — if your software
was sent packets by a PCI, this is what you want.

If False, this parses the packet as if it were sent to a PCI; parsing messages that software
expecting to communicate with a PCI sends. This could be used to build a fake PCI, or
analyse the behaviour of other C-Bus software.

cbus.protocol.packet.int2byte ()
S.pack(vl, v2,...) -> bytes

Return a bytes object containing values v1, v2, ... packed according to the format string S.format. See
help(struct) for more on format strings.

38 Chapter 8. libcbus module index

cbus Documentation, Release 0.2-dev

pm_packet Module

class cbus.protocol.pm_packet.PointToMultipointPacket (checksum: bool =
True, priority_class:
cbus.common.PriorityClass =
<PriorityClass.CLASS_4:

0>, application: Op-
tional[cbus.common.Application]
= None, sals:
Union[cbus.protocol.application.sal.SAL,
Se-
quence[cbus.protocol.application.sal. SAL],
None] = None)
Bases: chus.protocol.base_packet.BasePacket, collections.abc.Sequence, typing.
Generic
Point to Multipoint Packet
Ref: Serial Interface User Guide, s4.2.9.2
append_sal (sal: cbus.protocol.application.sal. SAL) — None
clear sal () — None
Removes all SALs from this packet.
classmethod decode_packet (data: bytes, checksum: bool, prior-
ity_class: cbus.common.PriorityClass) —

cbus.protocol.pm_packet.PointToMultipointPacket

encode ()

index (x: cbus.protocol.application.sal. SAL, start: int = Ellipsis, end: int = Ellipsis) — int
Finds a SAL within this packet.

Raises ValueError - if not present

pp_packet Module

class cbus.protocol.pp_packet .PointToPointPacket (checksum: bool =
True, priority_class:
cbus.common.PriorityClass
= <PriorityClass.CLASS_4:

0>, unit_address: int = 0,
bridge_address: int = 0,
hops: Optional[Sequence[int]]
= None, cals: Op-

tional[Sequence[Union[cbus.protocol.cal.extended. Extended(
cbus.protocol.cal.identify.ldentifyCAL,
cbus.protocol.cal.reply.ReplyCAL,
cbus.protocol.cal.recall.Recall CAL]]]

= None)
Bases: chus.protocol.base_packet.BasePacket, collections.abc.Sequence, typing.

Generic

classmethod decode_cal (data: bytes) — Tuple[Union[cbus.protocol.cal.extended.ExtendedCAL,
cbus.protocol.cal.identify.IdentifyCAL,
cbus.protocol.cal.reply.ReplyCAL, cbus.protocol.cal.recall.Recall CAL],
int]

8.1. cbus Package 39

cbus Documentation, Release 0.2-dev

classmethod decode_packet (data: bytes, checksum: bool, prior-
ity_class: cbus.common.PriorityClass) —
cbus.protocol.pp_packet.PointToPointPacket

encode () — bytes

index (x: Union[cbus.protocol.cal.extended. ExtendedCAL, cbus.protocol.cal.identify.IdentifyCAL,
cbus.protocol.cal.reply.ReplyCAL, cbus.protocol.cal.recall. RecallCAL], start: int = Ellipsis,
end: int = Ellipsis) — int
Finds a CAL within this packet.

Raises ValueError —if not present

reset_packet: PCl Reset Packet
class cbus.protocol.reset_packet .ResetPacket
Bases: chus.protocol.base_packet.SpecialClientPacket

encode ()

scs_packet Module
class cbus.protocol.scs_packet.SmartConnectShortcutPacket
Bases: chus.protocol.base_packet.SpecialClientPacket

encode () — bytes

pciprotocol Module

class cbus.protocol.pciprotocol.PCIProtocol (timesync_frequency: int = 10, han-
dle_clock_requests: bool = True, connec-
tion_lost_future: Optional[_asyncio.Future]
= None)
Bases: cbus.protocol.cbus_protocol.CBusProtocol
Implements an asyncio Protocol for communicating with a C-Bus PCI/CNI over TCP or serial.

clock_datetime (when: Optional[datetime.datetime] = None)
Sends the system’s local time to the CBus network.

Parameters when (datetime.datet ime)— The time and date to send to the CBus network.
Defaults to current local time.

connection_lost (exc: Optional[Exception]) — None
Called when the connection is lost or closed.

The argument is an exception object or None (the latter meaning a regular EOF is received or the connec-

tion was aborted or closed).

connection_made (transport: asyncio.transports.WriteTransport) — None

Called by asyncio when a connection is made to the PCI. This will perform a reset of the PCI to establish

the correct communications protocol, and start time synchronisation.

handle_cbus_packet (p: cbus.protocol.base_packet.BasePacket) — None
Dispatches all packet types into a high level event handler.

identify (unit_address, attribute)
Sends an IDENTIFY command to the given unit_address.

40 Chapter 8. libcbus module index

cbus Documentation, Release 0.2-dev

Parameters
* unit_address (int)— Unit address to send the packet to

e attribute (int)— Attribute ID to retrieve information for. See s7.2 of Serial Interface
Guide for acceptable codes.

Returns Single-byte string with code for the confirmation event.
Return type string

lighting group_of£f (group_addr: Union[int, Iterable[int]])
Turns off the lights for the given group_id.

Parameters group_addr (int, or iterable of ints of length <= 9.) -
Group address(es) to turn the lights off for, up to 9

Returns Single-byte string with code for the confirmation event.
Return type string

lighting group_on (group_addr: Union[int, Iterable[int]])
Turns on the lights for the given group_id.

Parameters group_addr (int, or iterable of ints of length <= 9.) -
Group address(es) to turn the lights on for, up to 9

Returns Single-byte string with code for the confirmation event.
Return type string

lighting group_ramp (group_addr: int, duration: int, level: int = 255)
Ramps (fades) a group address to a specified lighting level.

Note: CBus only supports a limited number of fade durations, in decreasing accuracy up to 17 minutes
(1020 seconds). Durations longer than this will throw an error.

A duration of 0 will ramp “instantly” to the given level.
Parameters
* group_addr (int) — The group address to ramp.
* duration (int) — Duration, in seconds, that the ramp should occur over.
* level (int)— A value between 0 and 255 indicating the brightness.
Returns Single-byte string with code for the confirmation event.
Return type string

lighting group_terminate_ramp (group_addr: Union[int, Iterable[int]])
Stops ramping a group address at the current point.

Parameters group_addr (int)— Group address to stop ramping of.
Returns Single-byte string with code for the confirmation event.
Return type string

on_clock_request (source_addr)
Event called when a unit requests time from the network.

Parameters source_addr (int) — Source address of the unit requesting time.

on_clock_update (source_addr, val)
Event called when a unit sends time to the network.

8.1.

cbus Package 41

cbus Documentation, Release 0.2-dev

Parameters source_addr (int)— Source address of the unit requesting time.

on_confirmation (code: bytes, success: bool)
Event called when a command confirmation event was received.

Parameters
* code — A single byte matching the command that this is a response to.
¢ success — True if the command was successful, False otherwise.

on_lighting group_of£f (source_addr: int, group_addr: int)
Event called when a lighting application “off” request is received.

Parameters
* source_addr (int) — Source address of the unit that generated this event.
* group_addr (int) — Group address being turned off.

on_lighting group_on (source_addr: int, group_addr: int)
Event called when a lighting application “on” request is received.

Parameters
* source_addr (int) — Source address of the unit that generated this event.
* group_addr (int) — Group address being turned on.

on_lighting group_ramp (source_addr: int, group_addr: int, duration: int, level: int)
Event called when a lighting application ramp (fade) request is received.

Parameters
* source_addr (int)— Source address of the unit that generated this event.
* group_addr (int)— Group address being ramped.
* duration (int) — Duration, in seconds, that the ramp is occurring over.
* level (int)— Target brightness of the ramp (0 - 255).

on_lighting group_terminate_ramp (source_addr: int, group_addr: int)
Event called when a lighting application “terminate ramp” request is received.

Parameters
* source_addr (int)— Source address of the unit that generated this event.
* group_addr (int) — Group address stopping ramping.

on_lighting label_text (source_addr: int, group_addr: int, flavour: int, language_code: int,

label: str)
Event called when a group address’ label text is updated.

Parameters
* source_addr (int) — Source address of the unit that generated this event.
* group_addr (int) — Group address to relabel.
e flavour (int)— “Flavour” of the label to update. This is a value between 0 and 3.
* language_code (int)— Language code for the label.
* label (str)— Label text, or an empty string to delete the label.

on_mmi (application: int, data: bytes)
Event called when a MMI was received.

42 Chapter 8. libcbus module index

cbus Documentation, Release 0.2-dev

Parameters
* application — Application that this MMI concerns.
* data — MMI data

on_pci_cannot_accept_data()
Event called whenever the PCI cannot accept the supplied data. Common reasons for this occurring:

* The checksum is incorrect.
* The buffer in the PCI is full.
Unfortunately the PCI does not tell us which requests these are associated with.

This error can occur if data is being sent to the PCI too quickly, or if the cable connecting the PCI to the
computer is faulty.

While the PCI can operate at 9600 baud, this only applies to data it sends, not to data it recieves.

on_pci_power_up ()
If Power-up Notification (PUN) is enabled on the PCI, this event is fired.

This event may be fired multiple times in quick succession, as the PCI will send the event twice.

on_reset ()
Event called when the PCI has been hard reset.

pci_reset ()
Performs a full reset of the PCI.

timesync ()

pciserverprotocol Module

class cbus.protocol.pciserverprotocol.PCIServerProtocol
Bases: cbus.protocol.cbus_protocol.CBusProtocol
Implements an asyncio Protocol for simulating a C-Bus PCI/CNI over TCP or serial.
This presently only implements a subset of the protocol used by PCIProtocol.

connection_made (transport)
Called by asyncio a connection is made to the simulated PCI.

This doesn’t get fired in normal serial connections, however we’ll send a power up notification (PUN).
Serial Interface User Guide s4.3.3.4, page 33

echo (data: bytes) — None
Called when data needs to be echoed to the underlying transport.

This is only called when running in server mode.

The default implementation is a stub, and needs to be implemented when running in server mode. This
should only do something if the virtual PCI is in basic mode.

handle_cbus_packet (p: cbus.protocol.base_packet.BasePacket) — None
Handles a single CBus packet.

lighting group_o£f£ (source_addr, group_addr)
Turns off the lights for the given group_addr.

Parameters

¢ source_addr (int)— Source address of the event.

8.1. cbus Package 43

cbus Documentation, Release 0.2-dev

* group_addr (int) — Group address to turn the lights on for.
Returns Single-byte string with code for the confirmation event.
Return type string

lighting group_on (source_addr, group_addr)
Turns on the lights for the given group_addr.

Parameters

* source_addr (int)— Source address of the event.

* group_addr (int) — Group address to turn the lights on for.
Returns Single-byte string with code for the confirmation event.
Return type string

lighting group_ramp (source_addr, group_addr, duration, level=1.0)
Ramps (fades) a group address to a specified lighting level.

Note: CBus only supports a limited number of fade durations, in decreasing accuracy up to 17 minutes
(1020 seconds). Durations longer than this will throw an error.

A duration of 0 will ramp “instantly” to the given level.
Parameters
e source_addr (int) — Source address of the event.
* group_addr (int) — The group address to ramp.
* duration (int) — Duration, in seconds, that the ramp should occur over.
* level (float)— An amount between 0.0 and 1.0 indicating the brightness to set.
Returns Single-byte string with code for the confirmation event.
Return type string

lighting group_terminate_ramp (source_addr, group_addr)
Stops ramping a group address at the current point.

Parameters

* source_addr (int)— Source address of the event.

* group_addr (int) — Group address to stop ramping of.
Returns Single-byte string with code for the confirmation event.
Return type string

on_clock_request ()
Event called when a clock application “request time” is recieved.

on_clock_update (val)
Event called when a clock application “update time” is recieved.

Parameters
* variable (datetime.date or datetime.time)— Clock variable to update.
¢ val — Clock value

on_lighting group_of£f (group_addr)
Event called when a lighting application “off” request is recieved.

44 Chapter 8. libcbus module index

cbus Documentation, Release 0.2-dev

Parameters group_addr (int)— Group address being turned off.

on_lighting group_on (group_addr)
Event called when a lighting application “on” request is recieved.

Parameters group_addr (int) — Group address being turned on.

on_lighting_group_ramp (group_addr, duration, level)
Event called when a lighting application ramp (fade) request is recieved.

Parameters
e group_addr (int) — Group address being ramped.
* duration (int) — Duration, in seconds, that the ramp is occurring over.
* level (float) — Target brightness of the ramp (0.0 - 1.0).

on_lighting group_terminate_ramp (group_addr)
Event called when a lighting application “terminate ramp” request is recieved.

Parameters group_addr (int)— Group address ramp being terminated.

on_master_application_status (group_address: int) — None
Event for Status Request for the master application.

This expects a binary status report of the presence of every unit on the network. :param group_address:
Group number to start from

on_reset ()
Event called when the PCI has been hard reset.

send_confirmation (code: bytes, ok: bool = True)

send_error ()

Applications

Running ontop of the C-Bus protocols are applications.
This package provides encoders and decoders for application-level messages on the C-Bus network.

Application messages inside of C-Bus packets are called “Specific Application Language”, or SALs for short. A
packet may contain many SALs for a single application, up to the MTU of the C-Bus network.

Clock and Timekeeping Application

The Clock and Timekeeping Application is used to provide access to date and time information to CBus units.

This is used for example in conjunction with programmable units that act differently depending on the time or date,
and with touchscreen units that may display the time on their screens.

Please refer to this document in conjunction with the Clock and Timekeeping Application Guide published by Clipsal.

class cbus.protocol.application.clock.ClockApplication
Bases: cbus.protocol.application.sal.BaseApplication

This class is called in the cbus.protocol.applications. APPLICATIONS dict in order to describe how to decode
clock and timekeeping application events received from the network.

Do not call this class directly.

8.1. cbus Package 45

http://training.clipsal.com/downloads/OpenCBus/Clock%20and%20Timekeeping%20Application.pdf

cbus Documentation, Release 0.2-dev

static decode_sals (data: bytes) — Sequence[cbus.protocol.application.sal. SAL]
Decodes a clock and timekeeping application packet and returns its SAL(s).

static supported_applications () — Set[cbus.common.Application]
Gets a list of supported Application IDs for the application.

All application IDs must be in the range 0x00 - Oxff.

class cbus.protocol.application.clock.ClockSAL

Bases: cbus.protocol.application.sal.SAL, abc.ABC
Base type for clock and timekeeping application SALSs.
application

static decode_sals (data: bytes) — Sequence[cbus.protocol.application.clock.ClockSAL]
Decodes a clock broadcast application packet and returns it’s SAL(s).

Parameters data — SAL data to be parsed.
Returns The SAL messages contained within the given data.

Return type list of cbus.protocol.application.clock.ClockSAL

class cbus.protocol.application.clock.ClockUpdateSAL (val: Union[datetime.date, date-

time.time])
Bases: chus.protocol.application.clock.ClockSAL

Clock update event SAL.
Informs the network of the current time.
Creates a new SAL Clock update message.

Use clock_update_sal (val) instead of this constructor, as that method handles datetime.
datetime objects (in addition to datetime.date and datetime.time, always returns
Sequence[ClockUpdateSAL].

Parameters val — The value of that variable. Dates are represented in native date format, and times
are represented in native time format.

classmethod decode (data: bytes, command_code: int) — Tu-

ple[Optional[cbus.protocol.application.clock.ClockSAL], bytes]
Do not call this method directly — use ClockSAL.decode

encode () — bytes
is_date

is_time

class cbus.protocol.application.clock.ClockRequestSAL

Bases: chus.protocol.application.clock.ClockSAL
Clock request event SAL.

Requests network time.

Creates a new SAL Clock request message.

classmethod decode (data: bytes) — Tuple[Optional[cbus.protocol.application.clock.ClockSAL],
bytes]
Do not call this method directly — use ClockSAL.decode

encode () — bytes

46

Chapter 8. libcbus module index

cbus Documentation, Release 0.2-dev

cbus.protocol.application.clock.clock_update_sal (val: Union[datetime.date, date-
time.time, datetime.datetime]) — Se-

quence[cbus.protocol.application.clock.ClockUpdateSAL]
Creates Clock Update SAL(s) based on Python datetime objects.

Parameters val — The value to set in the ClockUpdateSAL. If this is a datetime.
datetime, this will create multiple ClockUpdateSAL objects. If this is a datetime.
date or datetime.time, this will only create only a single ClockUpdateSAL.

Returns Sequence of ClockUpdateSAL, regardless of input value type.

Raises TypeError — On invalid input type.

Enable Control Application

The Enable Control Application is used to set network variables on CBus units.
This can change the behaviour of certain elements of the network, or allow some reprogramming of devices.
Please refer to this document in conjunction with the Enable Control Application Guide published by Clipsal.

class cbus.protocol.application.enable.EnableApplication
Bases: cbus.protocol.application.sal.BaseApplication

This class is called in the cbus.protocol.applications. APPLICATIONS dict in order to describe how to decode
enable broadcast application events received from the network.

Do not call this class directly.

classmethod decode_sals (data: bytes) — List[cbus.protocol.application.enable.EnableSAL]
Decodes a enable broadcast application packet and returns its SAL(s).

static supported_applications () — Set[cbus.common.Application]
Gets a list of supported Application IDs for the application.

All application IDs must be in the range 0x00 - Oxff.

class cbus.protocol.application.enable.EnableSAL
Bases: cbus.protocol.application.sal.SAL

Base type for enable control application SALs.
application

static decode_sals (data: bytes) — List[cbus.protocol.application.enable.EnableSAL]
Decodes a enable control application packet and returns it’s SAL(s).

Parameters data (str)— SAL data to be parsed.
Returns The SAL messages contained within the given data.
Return type list of cbus.protocol.application.enable.EnableSAL

class cbus.protocol.application.enable.EnableSetNetworkVariableSAL (variable,

value)
Bases: chus.protocol.application.enable.EnableSAL

Enable control Set Network Variable SAL.
Sets a network variable.
Creates a new SAL Enable Control Set Network Variable

Parameters

8.1. cbus Package 47

http://training.clipsal.com/downloads/OpenCBus/Enable%20Control%20Application.pdf

cbus Documentation, Release 0.2-dev

* variable (int)— The variable ID being changed
e value (int)— The value of the network variable

classmethod decode (data)
Do not call this method directly — use EnableSAL.decode

encode () — bytes

Lighting Application

The lighting application is the most commonly used application on the C-Bus network.

It is used for turning lights on and off, and setting lights to a particular brightness.

Sometimes the lighting application is used to control other, non-lighting loads, such as exhaust fans.
Please refer to this document in conjunction with the Lighting Application Guide published by Clipsal.

class cbus.protocol.application.lighting.LightingApplication
Bases: cbus.protocol.application.sal.BaseApplication

This class is called in the cbus.protocol.applications. APPLICATIONS dict in order to describe how to decode
lighting application events recieved from the network.

Do not call this class directly.

static decode_sals (data: bytes) — List[cbus.protocol.application.sal. SAL]
Decodes a SAL message

static supported_applications () — FrozenSet[int]
Gets a list of supported Application IDs for the application.

All application IDs must be in the range 0x00 - Oxff.

class cbus.protocol.application.lighting.LightingSAL (group_address: int)
Bases: cbus.protocol.application.sal.SAL, abc.ABC

Base type for lighting application SALs.

This should not be called directly by your code!

Use one of the subclasses of cbus.protocol.lighting. LightingSAL instead.
application

static decode (data: bytes, command_code: int, group_address: int) — Tu-
ple[Optional[cbus.protocol.application.lighting.LightingSALY], bytes]

static decode_sals (data: bytes) — List[cbus.protocol.application.lighting.LightingSAL]
Decodes a lighting application packet and returns it’s SAL(s).

Parameters data — SAL data to be parsed.
Returns The SAL messages contained within the given data.
Return type list of cbus.protocol.application.lighting.LightingSAL

encode () — bytes
Encodes the SAL into a format for sending over the C-Bus network.

class cbus.protocol.application.lighting.LightingRampSAL (group_address: int, dura-

tion: int, level: int)
Bases: chus.protocol.application.lighting.LightingSAL

Lighting Ramp (fade) event SAL

48 Chapter 8. libcbus module index

http://training.clipsal.com/downloads/OpenCBus/Lighting%20Application.pdf

cbus Documentation, Release 0.2-dev

Instructs the given group address to fade to a lighting level (brightness) over a given duration.
Creates a new SAL Lighting Ramp message.
Parameters
* group_address (int)— The group address to ramp.
* duration (int) — The duration to ramp over, in seconds.

* level (int) — The level to ramp to, with O indicating off, and 255 indicating full bright-
ness.

static decode (data: bytes, command_code: int, group_address: int)y — Tu-

ple[Optional[cbus.protocol.application.lighting.LightingSAL], bytes]
Do not call this method directly — use LightingSAL.decode

encode () — bytes
Encodes the SAL into a format for sending over the C-Bus network.

class cbus.protocol.application.lighting.LightingOnSAL (group_address: int)
Bases: chus.protocol.application.lighting.LightingSAL

Lighting on event SAL

Instructs a given group address to turn it’s load on.

This should not be called directly by your code!

Use one of the subclasses of cbus.protocol.lighting.LightingSAL instead.

static decode (data: bytes, command_code: int, group_address: int) — Tu-

ple[cbus.protocol.application.lighting.LightingOnSAL, bytes]
Do not call this method directly — use LightingSAL.decode

encode ()
Encodes the SAL into a format for sending over the C-Bus network.

class cbus.protocol.application.lighting.LightingO£f£SAL (group_address: int)
Bases: chus.protocol.application.lighting.LightingSAL

Lighting off event SAL

Instructs a given group address to turn it’s load off.

This should not be called directly by your code!

Use one of the subclasses of cbus.protocol.lighting.LightingSAL instead.

static decode (data: bytes, command_code: int, group_address: int) — Tu-

ple[cbus.protocol.application.lighting. LightingOffSAL, bytes]
Do not call this method directly — use LightingSAL.decode

encode ()
Encodes the SAL into a format for sending over the C-Bus network.

class cbus.protocol.application.lighting.LightingTerminateRampSAL (group_address:
int)
Bases: chus.protocol.application.lighting.LightingSAL
Lighting terminate ramp event SAL

Instructs the given group address to discontinue any ramp operations in progress, and use the brightness that
they are currently at.

This should not be called directly by your code!
Use one of the subclasses of cbus.protocol.lighting.LightingSAL instead.

8.1. cbus Package 49

cbus Documentation, Release 0.2-dev

static decode (data: bytes, command_code: int, group_address: int) — Tu-

ple[cbus.protocol.application.lighting.LightingTerminateRampSAL, bytes]
Do not call this method directly — use LightingSAL.decode

encode ()
Encodes the SAL into a format for sending over the C-Bus network.

Temperature Broadcast Application

The Temperature Broadcast application is used to notify units on the C-Bus network of changes in temperature. It is
used to allow temperature control systems to react to changes in environmental conditions.

This has been replaced by the Measurement application (not get implemented by 1ibcbus).
Please refer to this document in conjunction with the Temperature Broadcast Application Guide published by Clipsal.

class cbus.protocol.application.temperature.TemperatureApplication
Bases: cbus.protocol.application.sal.BaseApplication

This class is called in the cbus.protocol.applications. APPLICATIONS dict in order to describe how to decode
temperature broadcast application events recieved from the network.

Do not call this class directly.

static decode_sals (data: bytes) — Sequence[cbus.protocol.application.temperature. TemperatureSAL]
Decodes a temperature broadcast application packet and returns it’s SAL(s).

static supported_applications () — Set[cbus.common.Application]
Gets a list of supported Application IDs for the application.

All application IDs must be in the range 0x00 - Oxff.

class cbus.protocol.application.temperature.TemperatureSAL (group_address: int)
Bases: cbus.protocol.application.sal.SAL, abc.ABC

Base type for temperature broadcast application SALs.

This should not be called directly by your code!

Use one of the subclasses of cbus.protocol.temperature. TemperatureSAL instead.
application

static decode_sals (data: bytes) — Sequence[cbus.protocol.application.temperature. TemperatureSAL]
Decodes a temperature broadcast application packet and returns its SAL(s).

Parameters data — SAL data to be parsed.
Returns The SAL messages contained within the given data.
Return type list of cbus.protocol.application.temperature. TemperatureSAL

encode () — bytes
Encodes the SAL into a format for sending over the C-Bus network.

class cbus.protocol.application.temperature.TemperatureBroadcastSAL (group_address:
int,
temper-
ature:
float)

Bases: chus.protocol.application.temperature.TemperatureSAL

Temperature broadcast event SAL.

50 Chapter 8. libcbus module index

http://training.clipsal.com/downloads/OpenCBus/Temperature%20Broadcast%20Application.pdf

cbus Documentation, Release 0.2-dev

Informs the network of the current temperature being sensed at a location.
Creates a new SAL Temperature Broadcast message.
Parameters
* group_address (int) — The group address that is reporting the temperature.
* temperature (f1loat)— The temperature, in degrees celsius, between 0.0 and 63.75.

classmethod decode (data: bytes, group_address: int) — Tu-

ple[cbus.protocol.application.temperature. TemperatureSAL, bytes]
Do not call this method directly — use TemperatureSAL.decode

encode () — bytes
Encodes the SAL into a format for sending over the C-Bus network.

8.1.3 toolkit Package

cbz Module

cbus/toolkit/cbz.py Library for reading CBus Toolkit CBZ files.
Copyright 2012-2019 Michael Farrell <micolous+git@ gmail.com>

This library is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library. If not, see
<http://www.gnu.org/licenses/>.

class cbus.toolkit.cbz.Application (oid: uuid. UUID, tag_name: str, address: int, description:

str; groups: Sequence[cbus.toolkit.cbz. Group])
Bases: cbus.toolkit.cbz.BaseNetworkElement

class cbus.toolkit.cbz.BaseCBZElement (oid: uuid. UUID)
Bases: cbus.toolkit.cbz._Element

class cbus.toolkit.cbz.BaseNetworkElement (oid: uuid.UUID, tag_name: str, address: int,

description: str)
Bases: cbus.toolkit.chz.BaseCBZElement

class cbus.toolkit.cbz.CBZ (fh: BinarylO)
Bases: object

Opens the file as a CBZ.

exception cbus.toolkit.cbz.CBZException
Bases: Exception

class cbus.toolkit.cbz.Group (oid: uuid.UUID, tag_name: str, address: int, description: str, lev-

els: Sequence[cbus.toolkit.cbz.Level])
Bases: cbus.toolkit.cbz.BaseNetworkElement

8.1. cbus Package 51

mailto:micolous+git@gmail.com
http://www.gnu.org/licenses/

cbus Documentation, Release 0.2-dev

class cbus.toolkit.cbz.Installation (oid: uuid UUID, db_version: str, version: Str,
modified: datetime.datetime, installation_detail:
cbus.toolkit.cbz.InstallationDetail, project:

cbus.toolkit.cbz. Project)
Bases: cbhus.toolkit.cbz.BaseCBZElement

class cbus.toolkit.cbz.InstallationDetail (oid: uuid.UUID, system_location: str, hard-
ware_platform: str, hostname: str, os_name:
str, os_version: str, hardware_location: str, in-

staller: cbus.toolkit.cbz. Installer)
Bases: cbus.toolkit.cbhbz.BaseCBZElement

class cbus.toolkit.cbz.Installer (oid: uuid UUID, name: str)
Bases: chus.toolkit.cbz.BaseCBZElement

class cbus.toolkit.cbz.Interface (0id: uuid. UUID, interface_type: str, interface_address: str)
Bases: cbus.toolkit.chz.BaseCBZElement

class cbus.toolkit.cbz.Level (oid: uuid.UUID, tag_name: str, address: int, description: str,

value: int)
Bases: cbus.toolkit.chz.BaseNetworkElement

class cbus.toolkit.cbz.Network (oid: uuid. UUID, tag_name: str, address: int, description: str,
network_number: int, interface: cbus.toolkit.cbz.Interface, ap-
plications: Sequence[cbus.toolkit.cbz.Application], units: Se-

quence[cbus.toolkit.cbz. Unit])
Bases: cbus.toolkit.cbz.BaseNetworkElement

class cbus.toolkit.cbz.PP (name: str, value: str)
Bases: cbus.toolkit.cbz._Element

class cbus.toolkit.cbz.Project (oid: uuid.UUID, tag name: str, address: str, description: str,

network: Sequence[cbus.toolkit.cbz. Network])
Bases: cbus.toolkit.cbz.BaseCBZElement

class cbus.toolkit.cbz.Unit (oid: wuuid.UUID, tag_name: str, address: int, description: str,
unit_type: str, unit_name: str, Serial_number: str, firmware_version:

str, catalog_number: str, pp: Sequence[cbus.toolkit.cbz.PP])
Bases: cbus.toolkit.chz.BaseNetworkElement

52 Chapter 8. libcbus module index

CHAPTER 9

Indices and tables

e search

53

cbus Documentation, Release 0.2-dev

54 Chapter 9. Indices and tables

Python Module Index

cbus
cbus
cbus
cbus
cbus

cbus
cbus
cbus
cbus
cbus
cbus
cbus
cbus
cbus
cbus

. common, 31
.protocol.
.protocol.
.protocol.
.protocol.

50

.protocol.
.protocol.
.protocol.
.protocol.
.protocol.
.protocol
.protocol.
.protocol.
.protocol.
.toolkit.cbz, 5l

application.clock,45
application.enable, 47
application.lighting, 48
application.temperature,

base_packet, 37
dm_packet, 38
packet, 38
pciprotocol, 40
pciserverprotocol, 43

.pm_packet, 39

pp_packet, 39
reset_packet, 40
scs_packet, 40

55

cbus Documentation, Release 0.2-dev

56 Python Module Index

Index

Sy mbols application (chus.protocol.application.enable.EnableSAL
-broker—-address ADDR attribute), 47

cmgttd command line option,9 application (chus.protocol.application.lighting.LightingSAL
-broker—-auth FILE attribute), 48

cmgttd command line option,9 application (chus.protocol.application.temperature. TemperatureSAL

-broker—-ca DIRECTORY attribute), 50
cmgttd command line option,9 Application (class in cbus.common), 31
_pbroker—-client—-cert PEM Application (class in cbus.toolkit.cbz), 51

cmgttd command line option, 10 B
—-broker-client-key PEM
cmgttd command line option, 10 BaseCBZElement (class in cbus.toolkit.cbz), 51
—pbroker—-disable-tls BaseNetworkElement (class in cbus.toolkit.cbz), 51
cmgttd command line option,9 BasePacket (class in cbus.protocol.base_packet), 37
-broker-port PORT BINARY (cbus.common.ExtendedCALType attribute), 34
cmgttd command line option,9
—log-file FILE C
cmgttd command line option,ll CAL (class in cbus.common), 33
—-no-clock cbus . common (module), 31
cmgttd command line option, Il cbus.protocol.application.clock (module),
-project-file CBZ 45
cmgttd command line option, 10 cbus.protocol.application.enable (mod-
—serial DEVICE ule), 47
cmgttd command line option,9 cbus.protocol.application.lighting (mod-
—tcp ADDR:PORT ule), 48
cmgttd command line option,9 cbus.protocol.application.temperature
—timesync SECONDS (module), 50
cmgttd command line option, 10 cbus.protocol .base_packet (module), 37
-verbosity LEVEL cbus.protocol.dm_packet (module), 38
cmgttd command line option, Il cbus.protocol.packet (module), 38
cbus.protocol.pciprotocol (module), 40
A cbus.protocol.pciserverprotocol (module),
ACKNOWLEDGE (cbus.common.CAL attribute), 33 43
add_cbus_checksum () (in module cbus.common), cbus.protocol.pm_packet (module), 39
35 cbus.protocol.pp_packet (module), 39
append_sal () (cbus.protocol.pm_packet. PointToMultipoiitRecketrot ocol . reset_packet (module), 40
method), 39 cbus.protocol.scs_packet (module), 40
application (chus.protocol.application.clock.ClockSALcbus .toolkit .cbz (module), 51
attribute), 46 cbus_checksum () (in module cbus.common), 36

CBZ (class in cbus.toolkit.cbz), 51

57

cbus Documentation, Release 0.2-dev

CBZException, 5l

check_ga () (in module cbus.common), 36
CLASS_1 (cbus.common.PriorityClass attribute), 35
CLASS_2 (cbus.common.PriorityClass attribute), 35
CLASS_ 3 (cbus.common.PriorityClass attribute), 35
CLASS_4 (cbus.common.PriorityClass attribute), 35

decode () (cbus.protocol.application.clock.ClockUpdateSAL
class method), 46

decode () (cbus.protocol.application.enable.EnableSetNetworkVariableS:
class method), 48

decode () (cbus.protocol.application.lighting.Lighting OffSAL
static method), 49

clear_sal () (cbus.protocol.pm_packet. PointToMultipointBackét () (cbus.protocol.application.lighting.LightingOnSAL

method), 39
CLOCK (cbus.common.Application attribute), 31

clock_datetime () (cbus.protocol.pciprotocol. PCIProtocol

method), 40
clock_update_sal () (in
cbus.protocol.application.clock), 46
ClockApplication (class in
cbus.protocol.application.clock), 45
ClockAttribute (class in cbus.common), 33
ClockCommand (class in cbus.common), 33
ClockRequestSAL (class in
cbus.protocol.application.clock), 46
ClockSAL (class in cbus.protocol.application.clock), 46
ClockUpdateSAL (class in
cbus.protocol.application.clock), 46
cmgttd command line option
-broker—-address ADDR,9
-broker—-auth FILE,9
-broker—-ca DIRECTORY, 9
-broker-client-cert PEM, 10
-broker-client—-key PEM, 10
-broker—-disable-tls,9
-broker-port PORT,9
-log-file FILE, Il
-no-clock, 11
-project-file CBZ, 10
—-serial DEVICE,9
—-tcp ADDR:PORT,9
-timesync SECONDS, 10
-verbosity LEVEL, 11
CNI_ADDR, 12
connection_lost ()
(cbus.protocol.pciprotocol. PCIProtocol
method), 40
connection_made ()
(cbus.protocol.pciprotocol. PCIProtocol
method), 40
connection_made ()

module

(cbus.protocol.pciserverprotocol. PClServerProtodoéviceManagementPacket

method), 43
CUR_LVL (cbus.common.IdentifyAttribute attribute), 34

D

DATE (cbus.common.ClockAttribute attribute), 33

static method), 49

decode () (cbus.protocol.application.lighting.LightingRampSAL

static method), 49

decode () (cbus.protocol.application.lighting.LightingSAL
static method), 48

decode () (cbus.protocol.application.lighting.LightingTerminateRampSAl
static method), 49

decode () (cbus.protocol.application.temperature. TemperatureBroadcast!
class method), 51

decode_cal () (cbus.protocol.pp_packet. PointToPointPacket
class method), 39

decode_packet () (cbus.protocol.dm_packet. DeviceManagementPacket
static method), 38

decode_packet () (chbus.protocol.pm_packet. PointToMultipointPacket
class method), 39

decode_packet () (cbus.protocol.pp_packet. PointToPointPacket
class method), 39

decode_packet () (in module cbus.protocol.packet),
38

decode_sals () (cbus.protocol.application.clock.ClockApplication
static method), 45

decode_sals () (cbus.protocol.application.clock.ClockSAL
static method), 46

decode_sals () (cbus.protocol.application.enable.EnableApplication
class method), 47

decode_sals () (cbus.protocol.application.enable. EnableSAL
static method), 47

decode_sals () (cbus.protocol.application.lighting.LightingApplication
static method), 48

decode_sals () (cbus.protocol.application.lighting.LightingSAL
static method), 48

decode_sals () (cbus.protocol.application.temperature. TemperatureApj
static method), 50

decode_sals () (cbus.protocol.application.temperature. TemperatureSAl
static method), 50

DELAYS (cbus.common.ldentifyAttribute attribute), 34

DestinationAddressType (class in cbus.common),
33

(class in
cbus.protocol.dm_packet), 38

DSI_STATUS (cbus.common.IdentifyAttribute at-
tribute), 34

duration_to_ramp_rate ()
cbus.common), 36

(in module

decode () (cbus.protocol.application.clock.ClockRequestS,

class method), 46

echo () (cbus.protocol.pciserverprotocol. PCIServerProtocol

58

Index

cbus Documentation, Release 0.2-dev

method), 43
ENABLE (cbus.common.Application attribute), 31
EnableApplication (class in

cbus.protocol.application.enable), 47
EnableCommand (class in cbus.common), 34
EnableSAL (class in cbus.protocol.application.enable),

47
EnableSetNetworkVariableSAL (class in

cbus.protocol.application.enable), 47

encode () (cbus.protocol.application.clock.ClockRequestSALIRMWARE,_ VER

method), 46

encode () (cbus.protocol.application.clock.ClockUpdateSAL 2 g s

method), 46

ERROR (cbus.common.GroupState attribute), 34

exception (cbus.protocol.base_packet.InvalidPacket
attribute), 37

EXTENDED (cbus.common.ldentifyAttribute attribute),
34

EXTENDED_STATUS (chus.common.CAL attribute), 33

ExtendedCALType (class in cbus.common), 34

F

(cbus.common.lIdentifyAttribute
attribute), 34

(cbus.protocol.base_packet.BasePacket at-
tribute), 37

encode () (cbus.protocol.application.enable. EnableSetNetworkVariableSAL

method), 48

encode () (cbus.protocol.application.lighting.LightingOﬂ% CURRENT

method), 49

encode () (cbus.protocol.application.lighting.LightingOnS4ly; oyv appr

method), 49

encode () (cbus.protocol.application.lighting.LightingRampSALg 1 oppp

(cbus.common.lIdentifyAttribute at-
tribute), 34

(cbus.commond.IdentifyAttribute
attribute), 34

(cbus.common.IdentifyAttribute at-

method), 49 o o o tribute), 34
encode () (cbus.protocol.application. llghtmg.nghtmgSAlget real_cbus_checksum () (in module
method), 48 B u m

cbus.common), 36

encode () (cbus.protocol.application.lighting.LightingTerl@iﬂflte&gbf§él(cbus.common.CAL attribute), 33

method), 50

encode () (cbus.protocol.application.temperature. Temperqiyre

method), 51

Group (class in cbus.toolkit.cbz), 51
gg%“dﬁ@é%fass in cbus.common), 34

encode () (chus.protocol.application.temperature. TemperdireSAL

method), 50
encode ()
method), 37
encode ()
method), 37

encode () (cbus.protocol.dm_packet. DeviceManagementPacket

method), 38

(cbus.protocol.base_packet. BasePacket

(cbus.protocol.base_packet.InvalidPacket

handle_cbus_packet ()

(cbus.protocol.pciprotocol. PCIProtocol

method), 40
handle_cbus_packet ()
(cbus.protocol.pciserverprotocol. PCIServerProtocol
method), 43

encode () (cbus.protocol.pm _packet.PointToMultipOintPaqket

method), 39

encode () (cbus.protocol.pp_packet.PointToPointPacket

method), 40
encode ()
method), 40

encode () (cbus.protocol.scs _packet.SmartConnectShortcm%ﬁ

method), 40

encode_packet () (cbus.protocol.base _packet.BasePackje

method), 37
environment wvariable
CBUS_CLOCK, 12

CBUS_TIMESYNC, 12

CNI_ADDR, 12
MQTT_PORT, 12
MQTT_SERVER, 12
MQTT_USE_TLS, 12
SERIAL_PORT, 12
TZ,12, 14

(cbus.protocol.reset_packet.ResetPacket

IDENTIFY (chus.common.CAL attribute), 33
identify () (cbus.protocol.pciprotocol. PCIProtocol
method), 40
IdentifyAttribute (class in cbus.common), 34
) (cbus.protocol.pm_packet. PointToMultipointPacket
method), 39
(cbus.protocol.pp_packet. PointToPointPacket
method), 40
Installation (class in cbus.toolkit.cbz), 51
InstallationDetail (class in cbus.toolkit.cbz), 52
Installer (class in cbus.toolkit.cbz), 52
int2byte () (in module cbus.protocol.packet), 38
Interface (class in cbus.toolkit.cbz), 52
InvalidPacket (class in cbus.protocol.base_packet),
37
is_date (cbus.protocol.application.clock.ClockUpdateSAL
attribute), 46

Pdex()

Index

59

cbus Documentation, Release 0.2-dev

is_time (chbus.protocol.application.clock.ClockUpdateSALTIGHT ING_5c (cbus.common.Application attribute), 33

attribute), 46

L

LEVEL (cbus.common.ExtendedCALType attribute), 34
Level (class in cbus.toolkit.cbz), 52
LIGHT_LABEL (cbus.common.LightCommand
tribute), 35
LightCommand (class in cbus.common), 35
LIGHTING (cbus.common.Application attribute), 31
LIGHTING_30 (cbus.common.Application attribute), 31
LIGHTING_31 (cbus.common.Application attribute), 31
LIGHTING_32 (cbus.common.Application attribute), 31
LIGHTING_33 (cbus.common.Application attribute), 31
LIGHTING_ 34 (cbus.common.Application attribute), 31
LIGHTING_35 (cbus.common.Application attribute), 31
LIGHTING_36 (cbus.common.Application attribute), 31
LIGHTING_37 (cbus.common.Application attribute), 31
LIGHTING_38 (cbus.common.Application attribute), 32
LIGHTING_39 (cbus.common.Application attribute), 32
LIGHTING_ 3a (cbus.common.Application attribute), 32
LIGHTING_3b (cbus.common.Application attribute), 32
LIGHTING_3c (cbus.common.Application attribute), 32
LIGHTING_3d (cbus.common.Application attribute), 32
LIGHTING_3e (cbus.common.Application attribute), 32
LIGHTING_3f (cbus.common.Application attribute), 32
LIGHTING_40 (cbus.common.Application attribute), 32
LIGHTING_41 (cbus.common.Application attribute), 32
LIGHTING_42 (cbus.common.Application attribute), 32
LIGHTING_43 (cbus.common.Application attribute), 32
LIGHTING_44 (cbus.common.Application attribute), 32
LIGHTING_45 (cbus.common.Application attribute), 32
LIGHTING_46 (cbus.common.Application attribute), 32
LIGHTING_47 (cbus.common.Application attribute), 32
LIGHTING_48 (cbus.common.Application attribute), 32
LIGHTING_49 (cbus.common.Application attribute), 32
LIGHTING_4a (cbus.common.Application attribute), 32
LIGHTING_4b (cbus.common.Application attribute), 32
LIGHTING_4c (cbus.common.Application attribute), 32
LIGHTING_4d (cbus.common.Application attribute), 32
LIGHTING_4e (cbus.common.Application attribute), 32
LIGHTING_A4f (cbus.common.Application attribute), 32
LIGHTING_50 (cbus.common.Application attribute), 32
LIGHTING_51 (cbus.common.Application attribute), 32
LIGHTING_52 (cbus.common.Application attribute), 32
LIGHTING_53 (cbus.common.Application attribute), 32
LIGHTING_54 (cbus.common.Application attribute), 32
LIGHTING_55 (cbus.common.Application attribute), 32
LIGHTING_56 (cbus.common.Application attribute), 32
LIGHTING_57 (cbus.common.Application attribute), 32
LIGHTING_58 (cbus.common.Application attribute), 32
LIGHTING_59 (cbus.common.Application attribute), 32
LIGHTING_5a (cbus.common.Application attribute), 32
LIGHTING_5b (cbus.common.Application attribute), 32

at-

LIGHTING_ 5d (cbus.common.Application attribute), 33
LIGHTING_ 5e (cbus.common.Application attribute), 33
LIGHTING_5f£ (cbus.common.Application attribute), 33
LIGHTING_FIRST (cbus.common.Application at-
tribute), 33
lighting_group_off ()
(cbus.protocol.pciprotocol. PCIProtocol
method), 41
lighting_group_off ()
(cbus.protocol.pciserverprotocol. PCIServerProtocol
method), 43
lighting_group_on ()
(cbus.protocol.pciprotocol. PCIProtocol
method), 41
lighting_group_on ()
(cbus.protocol.pciserverprotocol. PCIServerProtocol
method), 44
lighting_group_ramp ()
(cbus.protocol.pciprotocol. PCIProtocol
method), 41
lighting_group_ramp ()
(cbus.protocol.pciserverprotocol. PCIServerProtocol
method), 44
lighting_group_terminate_ramp ()
(cbus.protocol.pciprotocol. PCIProtocol
method), 41
lighting_group_terminate_ramp ()
(cbus.protocol.pciserverprotocol. PCIServerProtocol

method), 44

LIGHTING_LAST (chus.common.Application attribute),
33

LightingApplication (class in
cbus.protocol.application.lighting), 48

LightingOffSAL (class in
cbus.protocol.application.lighting), 49

LightingOnSAL (class in
cbus.protocol.application.lighting), 49

LightingRampSAL (class in
cbus.protocol.application.lighting), 48

LightingSAL (class in

cbus.protocol.application.lighting), 48
LightingTerminateRampSAL (class in
cbus.protocol.application.lighting), 49
LOGIC_ASSIGN (cbus.common.IdentifyAttribute

attribute), 34

M

MANUFACTURER
attribute), 34
MASTER_APPLICATION
attribute), 33
MAX_LVL (cbus.common.ldentifyAttribute attribute), 34
MIN_LVL (cbus.common.ldentifyAttribute attribute), 34

(cbus.commond.IdentifyAttribute

(cbus.common.Application

60

Index

cbus Documentation, Release 0.2-dev

MISSING (cbus.common.GroupState attribute), 34

N

NET_TERM_LVL
attribute), 34

NET_VOLTAGE (cbus.common.IdentifyAttribute at-
tribute), 34

Network (class in cbus.toolkit.cbz), 52

O

(cbus.common.ldentifyAttribute

on_mmi ()

on_lighting_label_text ()

(cbus.protocol.pciprotocol. PCIProtocol
method), 42

on_master_application_status()

(cbus.protocol.pciserverprotocol. PCIServerProtocol
method), 45

(cbus.protocol.pciprotocol. PCIProtocol
method), 42

on_pci_cannot_accept_data()

(cbus.protocol.pciprotocol. PCIProtocol

method), 43

on_pci_power_up ()
(cbus.protocol.pciprotocol. PCIProtocol
method), 43

OFF (cbus.common.GroupState attribute), 34
OFF (cbus.common.LightCommand attribute), 35
ON (cbus.common.GroupState attribute), 34

ON (cbus.common.LightCommand attribute), 35

on_clock_request () on_reset () (cbus.protocol.pciprotocol. PCIProtocol
(cbus.protocol.pciprotocol. PCIProtocol method), 43 .
method), 41 on_reset () (cbus.protocol.pciserverprotocol. PCIServerProtocol
’ method), 45

on_clock_request ()

(cbus.protocol.pciserverprotocol.PCIServerProtoc%[le—SU%MiRtY) BElcbus.common.IdentifyAttr ibute at-
ribute),

method), 44
on_clock_update () P
(cbus.protocol.pciprotocol. PCIProtocol
method), 41 pci_reset () (cbus.protocol.pciprotocol. PCIProtocol

on_clock_update () method), 43

(cbus.protocol.pciserverprotocol. PCIServerProtodof TP rotocol (class in cbus.protocol.pciprotocol), 40
method), 44 PCIServerProtocol (class in

on_confirmation () cbus.protocol.pciserverprotocol), 43

(cbus.protocol.pciprotocol. PCIProtocol POINT_TO_MULTIPOINT
method), 42 (cbus.common.DestinationAddressType at-

on_lighting_group_off () tribute), 33
(cbus.protocol.pciprotocol. PCIProtocol POINT_TO_POINT (cbus.common.DestinationAddressType

method), 42 attribute), 33
on_lighting_group_off () POINT_TO_POINT_TO_MULTIPOINT

(cbus.protocol.pciserverprotocol. PCIServerProtocol (c.bus.common.DestinationAddr essType at-
method), 44 tribute), 33

on_lighting_group_on () PointToMultipointPacket (class in
(cbus.protocol.pciprotocol. PCIProtocol cbus.protocol.pm_packet), 39
method), 42 PointToPointPacket (class in

on_lighting_group_on () cbus.protocol.pp_packet), 39
(cbus.protocol.pciserverprotocol. PCIServerProtodd? (class in cbus.toolkit.cbz), 52

method), 45 PriorityClass (class in cbus.common), 35
on_lighting_group_ramp () Project (class in cbus.toolkit.cbz), 52
(cbus.protocol.pciprotocol. PCIProtocol
method), 42 R
on_lighting_group_ramp () RAMP_00_04 (cbus.common.LightCommand attribute),
(cbus.protocol.pciserverprotocol. PCIServerProtocol 35
method), 45 RAMP_00_08 (cbus.common.LightCommand attribute),
on_lighting_group_terminate_ramp () 35
(cbus.protocol.pciprotocol. PCIProtocol RAMP_00_12 (cbus.common.LightCommand attribute),
method), 42 35
on_lighting_group_terminate_ramp () RAMP_00_20 (cbus.common.LightCommand attribute),
(cbus.protocol.pciserverprotocol. PCIServerProtocol 35
method), 45 RAMP_00_30 (cbus.common.LightCommand attribute),
35

Index 61

cbus Documentation, Release 0.2-dev

RAMP_00_40 (cbus.common.LightCommand attribute),

35

RAMP_01_00 (cbus.common.LightCommand attribute),
35

RAMP_01_30 (cbus.common.LightCommand attribute),
35

RAMP_02_00 (cbus.common.LightCommand attribute),
35

RAMP_03_00 (cbus.common.LightCommand attribute),
35

RAMP_05_00 (cbus.common.LightCommand attribute),
35

RAMP_07_00 (cbus.common.LightCommand attribute),
35

RAMP_10_00 (cbus.common.LightCommand attribute),
35

RAMP_15_00 (cbus.common.LightCommand attribute),
35

RAMP_17_00 (cbus.common.LightCommand attribute),
35

RAMP_FASTEST (chus.common.LightCommand at-
tribute), 35

RAMP_INSTANT (cbus.common.LightCommand at-
tribute), 35

ramp_rate_to_duration () (in module

cbus.common), 36

RAMP_SLOWEST (cbus.common.LightCommand at-
tribute), 35

RECALL (cbus.common.CAL attribute), 33

REPLY (cbus.common.CAL attribute), 33

REQUEST_REFRESH (cbus.common.ClockCommand at-
tribute), 33

RESET (cbus.common.CAL attribute), 33

ResetPacket (class in cbus.protocol.reset_packet), 40

S

send_confirmation ()

(cbus.protocol.pciserverprotocol. PCIServerProtocol

method), 45

send_error () (cbus.protocol.pciserverprotocol. PCISe

method), 45
SERIAI_PORT, 12
SET_NETWORK_VARIABLE

(cbus.common.EnableCommand attribute),
34
SmartConnectShortcutPacket (class in
cbus.protocol.scs_packet), 40
SpecialClientPacket (class in
cbus.protocol.base_packet), 37
SpecialServerPacket (class in

cbus.protocol.base_packet), 37
STANDARD_STATUS (cbus.common.CAL attribute), 33
STATUS_REQUEST (cbus.common.Application at-

tribute), 33

SUMMARY (cbus.common.ldentifyAttribute attribute), 34

supported_applications ()
(cbus.protocol.application.clock.ClockApplication
static method), 46

supported_applications ()
(cbus.protocol.application.enable. EnableApplication
static method), 47

supported_applications ()
(cbus.protocol.application.lighting. LightingApplication
static method), 48

supported_applications ()
(cbus.protocol.application.temperature. TemperatureApplication
static method), 50

T

TEMPERATURE (cbus.common.Application attribute), 33

TemperatureApplication (class in
cbus.protocol.application.temperature), 50

TemperatureBroadcastSAL (class in
cbus.protocol.application.temperature), 50

TemperatureSAL (class in
cbus.protocol.application.temperature), 50

TERM_LVL (cbus.common.ldentifyAttribute attribute),
35

TERMINATE_RAMP (cbus.common.LightCommand at-
tribute), 35

TIME (cbus.common.ClockAttribute attribute), 33

timesync () (cbus.protocol.pciprotocol. PCIProtocol
method), 43

TYPE (cbus.common.IdentifyAttribute attribute), 35

TZ, 14

U

Unit (class in cbus.toolkit.cbz), 52

UNSET (cbus.common.DestinationAddressType at-
tribute), 34

UPDATE_NETWORK_VARIABLE

(cbus.common.ClockCommand attribute),
33
rvarotocol
validate cbus_checksum() (in module

cbus.common), 36
validate_ga () (in module cbus.common), 36

62

Index

	Introduction
	What is C-Bus?
	Clipsal’s other interfaces

	Installing libcbus
	All components (system install)
	C-Bus MQTT bridge only (Docker image)

	cmqttd
	Running
	Configuration
	Using with Home Assistant
	Running in Docker

	Hacking
	Official documentation
	CNI / network protocol
	Setting up a fake CNI and sniffing the protocol
	USB support / 5500PCU
	Unit Tests

	CNI Discovery
	Discovery Query
	Discovery Reply

	Wiser
	Downloading SWFs
	Protocol
	Getting a shell
	CFTP
	Firmware image

	dump_labels utility
	Invocation

	libcbus module index
	cbus Package

	Indices and tables
	Python Module Index
	Index

